These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 26062012)
1. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Peng M; Li H; Luo Z; Kong J; Wan Y; Zheng L; Zhang Q; Niu H; Vermorken A; Van de Ven W; Chen C; Zhang X; Li F; Guo L; Cui Y Nanoscale; 2015 Jul; 7(25):11155-62. PubMed ID: 26062012 [TBL] [Abstract][Full Text] [Related]
2. Doxorubicin Loaded Dextran-coated Superparamagnetic Iron Oxide Na-noparticles with Sustained Release Property: Intracellular Uptake, Phar-macokinetics and Biodistribution Study. Li H; Luo Z; Peng M; Guo L; Li F; Feng W; Cui Y Curr Pharm Biotechnol; 2022; 23(7):978-987. PubMed ID: 34097591 [TBL] [Abstract][Full Text] [Related]
3. Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Tarvirdipour S; Vasheghani-Farahani E; Soleimani M; Bardania H Int J Pharm; 2016 Mar; 501(1-2):331-41. PubMed ID: 26875475 [TBL] [Abstract][Full Text] [Related]
4. High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Peng N; Wu B; Wang L; He W; Ai Z; Zhang X; Wang Y; Fan L; Ye Q Biomater Sci; 2016 Nov; 4(12):1802-1813. PubMed ID: 27792228 [TBL] [Abstract][Full Text] [Related]
5. Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Agarwal A; Gupta U; Asthana A; Jain NK Biomaterials; 2009 Jul; 30(21):3588-96. PubMed ID: 19344947 [TBL] [Abstract][Full Text] [Related]
6. Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery. Zeng J; Du P; Liu L; Li J; Tian K; Jia X; Zhao X; Liu P Mol Pharm; 2015 Dec; 12(12):4188-99. PubMed ID: 26554495 [TBL] [Abstract][Full Text] [Related]
7. Enhanced doxorubicin delivery and cytotoxicity in multidrug resistant cancer cells using multifunctional magnetic nanoparticles. Pilapong C; Keereeta Y; Munkhetkorn S; Thongtem S; Thongtem T Colloids Surf B Biointerfaces; 2014 Jan; 113():249-53. PubMed ID: 24103503 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and in vitro and in vivo evaluations of poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate) magnetic nanoparticles containing doxorubicin as a potential targeted drug delivery system. Hałupka-Bryl M; Asai K; Thangavel S; Bednarowicz M; Krzyminiewski R; Nagasaki Y Colloids Surf B Biointerfaces; 2014 Jun; 118():140-7. PubMed ID: 24769390 [TBL] [Abstract][Full Text] [Related]
9. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. Sahoo B; Devi KS; Banerjee R; Maiti TK; Pramanik P; Dhara D ACS Appl Mater Interfaces; 2013 May; 5(9):3884-93. PubMed ID: 23551195 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. Du YZ; Weng Q; Yuan H; Hu FQ ACS Nano; 2010 Nov; 4(11):6894-902. PubMed ID: 20939508 [TBL] [Abstract][Full Text] [Related]
11. Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery. Zou Z; He D; He X; Wang K; Yang X; Qing Z; Zhou Q Langmuir; 2013 Oct; 29(41):12804-10. PubMed ID: 24073830 [TBL] [Abstract][Full Text] [Related]
12. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Veronese FM; Schiavon O; Pasut G; Mendichi R; Andersson L; Tsirk A; Ford J; Wu G; Kneller S; Davies J; Duncan R Bioconjug Chem; 2005; 16(4):775-84. PubMed ID: 16029018 [TBL] [Abstract][Full Text] [Related]
13. Anticancer medicines (Doxorubicin and methotrexate) conjugated with magnetic nanoparticles for targeting drug delivery through iron. Samra ZQ; Ahmad S; Javeid M; Dar N; Aslam MS; Gull I; Ahmad MM Prep Biochem Biotechnol; 2013; 43(8):781-97. PubMed ID: 23876138 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers. Elbialy NS; Fathy MM; Khalil WM Phys Med; 2014 Nov; 30(7):843-8. PubMed ID: 24950615 [TBL] [Abstract][Full Text] [Related]
15. Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties. He X; Wu X; Cai X; Lin S; Xie M; Zhu X; Yan D Langmuir; 2012 Aug; 28(32):11929-38. PubMed ID: 22799877 [TBL] [Abstract][Full Text] [Related]
16. Polylactide-based Magnetic Spheres as Efficient Carriers for Anticancer Drug Delivery. Mhlanga N; Sinha Ray S; Lemmer Y; Wesley-Smith J ACS Appl Mater Interfaces; 2015 Oct; 7(40):22692-701. PubMed ID: 26390359 [TBL] [Abstract][Full Text] [Related]
17. Mesoporous γ-Iron Oxide Nanoparticles for Magnetically Triggered Release of Doxorubicin and Hyperthermia Treatment. Benyettou F; Ocadiz Flores JA; Ravaux F; Rezgui R; Jouiad M; Nehme SI; Parsapur RK; Olsen JC; Selvam P; Trabolsi A Chemistry; 2016 Nov; 22(47):17020-17028. PubMed ID: 27739116 [TBL] [Abstract][Full Text] [Related]
18. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. Son S; Rao NV; Ko H; Shin S; Jeon J; Han HS; Nguyen VQ; Thambi T; Suh YD; Park JH Int J Biol Macromol; 2018 Apr; 110():399-405. PubMed ID: 29133095 [TBL] [Abstract][Full Text] [Related]
19. Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking. Huang J; Xue Y; Cai N; Zhang H; Wen K; Luo X; Long S; Yu F Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():41-51. PubMed ID: 25491958 [TBL] [Abstract][Full Text] [Related]
20. Intra-arterial delivery of superparamagnetic iron-oxide nanoshell and polyvinyl alcohol based chemoembolization system for the treatment of liver tumor. Liang Q; Wang YX; Ding JS; He W; Deng LL; Li N; Liao YJ; Li Z; Ye B; Wang W Discov Med; 2017 Jan; 23(124):27-39. PubMed ID: 28245425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]