BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26062131)

  • 1. A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family.
    Wu J; Liu W; Gong P
    Int J Mol Sci; 2015 Jun; 16(6):12943-57. PubMed ID: 26062131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-dependent RNA polymerases from Flaviviridae.
    Choi KH; Rossmann MG
    Curr Opin Struct Biol; 2009 Dec; 19(6):746-51. PubMed ID: 19914821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases.
    Selisko B; Dutartre H; Guillemot JC; Debarnot C; Benarroch D; Khromykh A; Desprès P; Egloff MP; Canard B
    Virology; 2006 Jul; 351(1):145-58. PubMed ID: 16631221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus.
    Lu G; Gong P
    Virus Res; 2017 Apr; 234():34-43. PubMed ID: 28131854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An induced-fit de novo initiation mechanism suggested by a pestivirus RNA-dependent RNA polymerase.
    Zhang BY; Liu W; Jia H; Lu G; Gong P
    Nucleic Acids Res; 2021 Sep; 49(15):8811-8821. PubMed ID: 34365500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage.
    Gorbalenya AE; Pringle FM; Zeddam JL; Luke BT; Cameron CE; Kalmakoff J; Hanzlik TN; Gordon KH; Ward VK
    J Mol Biol; 2002 Nov; 324(1):47-62. PubMed ID: 12421558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Structure of the RNA-Dependent RNA Polymerase of a Permutotetravirus Suggests a Link between Primer-Dependent and Primer-Independent Polymerases.
    Ferrero DS; Buxaderas M; Rodríguez JF; Verdaguer N
    PLoS Pathog; 2015 Dec; 11(12):e1005265. PubMed ID: 26625123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase.
    Beerens N; Selisko B; Ricagno S; Imbert I; van der Zanden L; Snijder EJ; Canard B
    J Virol; 2007 Aug; 81(16):8384-95. PubMed ID: 17537850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional insights from molecular modeling, docking, and dynamics study of a cypoviral RNA dependent RNA polymerase.
    Kundu A; Dutta A; Biswas P; Das AK; Ghosh AK
    J Mol Graph Model; 2015 Sep; 61():160-74. PubMed ID: 26264734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases.
    Selisko B; Papageorgiou N; Ferron F; Canard B
    Viruses; 2018 Jan; 10(2):. PubMed ID: 29385764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase.
    Ferrer-Orta C; Agudo R; Domingo E; Verdaguer N
    Curr Opin Struct Biol; 2009 Dec; 19(6):752-8. PubMed ID: 19914060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Structure-Function Diversity Survey of the RNA-Dependent RNA Polymerases From the Positive-Strand RNA Viruses.
    Jia H; Gong P
    Front Microbiol; 2019; 10():1945. PubMed ID: 31507560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The uncoupling of catalysis and translocation in the viral RNA-dependent RNA polymerase.
    Shu B; Gong P
    RNA Biol; 2017 Oct; 14(10):1314-1319. PubMed ID: 28277928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the coxsackievirus A16 RNA-dependent RNA polymerase elongation complex reveals novel features in motif A dynamics.
    Bi P; Shu B; Gong P
    Virol Sin; 2017 Dec; 32(6):548-552. PubMed ID: 29164396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An all-atom, active site exploration of antiviral drugs that target Flaviviridae polymerases.
    Valdés JJ; Gil VA; Butterill PT; Růžek D
    J Gen Virol; 2016 Oct; 97(10):2552-2565. PubMed ID: 27489039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution.
    Venkataraman S; Prasad BVLS; Selvarajan R
    Viruses; 2018 Feb; 10(2):. PubMed ID: 29439438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation.
    Choi KH; Groarke JM; Young DC; Kuhn RJ; Smith JL; Pevear DC; Rossmann MG
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4425-30. PubMed ID: 15070734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The modeled structure of the RNA dependent RNA polymerase of GBV-C virus suggests a role for motif E in Flaviviridae RNA polymerases.
    Ferron F; Bussetta C; Dutartre H; Canard B
    BMC Bioinformatics; 2005 Oct; 6():255. PubMed ID: 16225688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases.
    Watkins CL; Kempf BJ; Beaucourt S; Barton DJ; Peersen OB
    J Biol Chem; 2020 Jul; 295(31):10624-10637. PubMed ID: 32493771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.