These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 26062397)
41. Dimeric SecA is essential for protein translocation. Jilaveanu LB; Zito CR; Oliver D Proc Natl Acad Sci U S A; 2005 May; 102(21):7511-6. PubMed ID: 15897468 [TBL] [Abstract][Full Text] [Related]
42. Synthesis of novel 5-amino-thiazolo[4,5-d]pyrimidines as E. coli and S. aureus SecA inhibitors. Jang MY; De Jonghe S; Segers K; Anné J; Herdewijn P Bioorg Med Chem; 2011 Jan; 19(1):702-14. PubMed ID: 21094610 [TBL] [Abstract][Full Text] [Related]
43. Maximal efficiency of coupling between ATP hydrolysis and translocation of polypeptides mediated by SecB requires two protomers of SecA. Mao C; Hardy SJ; Randall LL J Bacteriol; 2009 Feb; 191(3):978-84. PubMed ID: 18978043 [TBL] [Abstract][Full Text] [Related]
44. Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon. Rusch SL; Kendall DA Biochim Biophys Acta; 2007 Jan; 1768(1):5-12. PubMed ID: 17011510 [TBL] [Abstract][Full Text] [Related]
45. Charged amino acids in a preprotein inhibit SecA-dependent protein translocation. Nouwen N; Berrelkamp G; Driessen AJ J Mol Biol; 2009 Mar; 386(4):1000-10. PubMed ID: 19244616 [TBL] [Abstract][Full Text] [Related]
46. Structural determinants of protein translocation in bacteria: conformational flexibility of SecA IRA1 loop region. Palladino P; Saviano G; Tancredi T; Benedetti E; Rossi F; Ragone R J Pept Sci; 2011 Apr; 17(4):263-9. PubMed ID: 21337475 [TBL] [Abstract][Full Text] [Related]
47. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175 [TBL] [Abstract][Full Text] [Related]
48. Identification of two interaction sites in SecY that are important for the functional interaction with SecA. van der Sluis EO; Nouwen N; Koch J; de Keyzer J; van der Does C; Tampé R; Driessen AJ J Mol Biol; 2006 Sep; 361(5):839-49. PubMed ID: 16890955 [TBL] [Abstract][Full Text] [Related]
49. [Immunolocalization of Secretion complex in Streptococcus mutans]. Hu P; Bian Z; Fan MW Zhonghua Kou Qiang Yi Xue Za Zhi; 2007 Dec; 42(12):709-11. PubMed ID: 18476550 [TBL] [Abstract][Full Text] [Related]
50. Electron microscopic visualization of asymmetric precursor translocation intermediates: SecA functions as a dimer. Tang Y; Pan X; Tai PC; Sui S Sci China Life Sci; 2010 Sep; 53(9):1049-56. PubMed ID: 21104364 [TBL] [Abstract][Full Text] [Related]
51. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. Duong F EMBO J; 2003 Sep; 22(17):4375-84. PubMed ID: 12941690 [TBL] [Abstract][Full Text] [Related]
52. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. Fekkes P; van der Does C; Driessen AJ EMBO J; 1997 Oct; 16(20):6105-13. PubMed ID: 9321390 [TBL] [Abstract][Full Text] [Related]
53. SecA-mediated targeting and translocation of secretory proteins. Chatzi KE; Sardis MF; Economou A; Karamanou S Biochim Biophys Acta; 2014 Aug; 1843(8):1466-74. PubMed ID: 24583121 [TBL] [Abstract][Full Text] [Related]
54. Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking. Mori H; Ito K Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16159-64. PubMed ID: 17060619 [TBL] [Abstract][Full Text] [Related]
55. Nucleotide and phospholipid-dependent control of PPXD and C-domain association for SecA ATPase. Ding H; Mukerji I; Oliver D Biochemistry; 2003 Nov; 42(46):13468-75. PubMed ID: 14621992 [TBL] [Abstract][Full Text] [Related]
56. Molecular mechanisms underlying the early stage of protein translocation through the Sec translocon. Mori T; Ishitani R; Tsukazaki T; Nureki O; Sugita Y Biochemistry; 2010 Feb; 49(5):945-50. PubMed ID: 20055474 [TBL] [Abstract][Full Text] [Related]
57. Identification of potential antivirulence agents by substitution-oriented screening for inhibitors of Streptococcus pyogenes sortase A. Wójcik M; Eleftheriadis N; Zwinderman MRH; Dömling ASS; Dekker FJ; Boersma YL Eur J Med Chem; 2019 Jan; 161():93-100. PubMed ID: 30343193 [TBL] [Abstract][Full Text] [Related]
58. Dual defensin strategy for targeting Enterococcus faecalis. Gilmore MS; Lebreton F; Van Tyne D Proc Natl Acad Sci U S A; 2013 Dec; 110(50):19980-1. PubMed ID: 24284170 [No Abstract] [Full Text] [Related]
59. Bacterial two-component signalling as a therapeutic target in drug design. Inhibition of NRII by the diphenolic methanes (bisphenols). Domagala JM; Alessi D; Cummings M; Gracheck S; Huang L; Huband M; Johnson G; Olson E; Shapiro M; Singh R; Song Y; Van Bogelen R; Vo D; Wold S Adv Exp Med Biol; 1998; 456():269-86. PubMed ID: 10549373 [No Abstract] [Full Text] [Related]
60. Bacterial Polyphosphate Kinases Revisited: Role in Pathogenesis and Therapeutic Potential. Gautam LK; Sharma P; Capalash N Curr Drug Targets; 2019; 20(3):292-301. PubMed ID: 30068269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]