These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 26062722)

  • 1. Investigation of the vertical electrical transport in a-Si:H/nc-Si:H superlattice thin films.
    Das D; Kar D
    Phys Chem Chem Phys; 2015 Jul; 17(26):17063-8. PubMed ID: 26062722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and microscopic studies of self-assembled nc-Si/a-SiC thin films grown by low pressure high density spontaneous plasma processing.
    Das D; Kar D
    Phys Chem Chem Phys; 2014 Dec; 16(46):25421-31. PubMed ID: 25342429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural factors impacting carrier transport and electroluminescence from Si nanocluster-sensitized Er ions.
    Cueff S; Labbé C; Jambois O; Berencén Y; Kenyon AJ; Garrido B; Rizk R
    Opt Express; 2012 Sep; 20(20):22490-502. PubMed ID: 23037398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of optimum p-nc-Si window layers for nc-Si solar cells.
    Mondal P; Das D
    Phys Chem Chem Phys; 2017 Aug; 19(32):21357-21363. PubMed ID: 28762421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum size effects on the optical properties of nc-Si QDs embedded in an a-SiOx matrix synthesized by spontaneous plasma processing.
    Das D; Samanta A
    Phys Chem Chem Phys; 2015 Feb; 17(7):5063-71. PubMed ID: 25598473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the electroluminescence efficiency of Si NC/SiO2 superlattice-based light-emitting diodes through hydrogen ion beam treatment.
    Fu SW; Chen HJ; Wu HT; Chen SP; Shih CF
    Nanoscale; 2016 Apr; 8(13):7155-62. PubMed ID: 26965185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable photoluminescence from nc-Si/a-SiNx:H quantum dot thin films prepared by ICP-CVD.
    Sain B; Das D
    Phys Chem Chem Phys; 2013 Mar; 15(11):3881-8. PubMed ID: 23407687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passivation of nanocrystalline silicon photovoltaic materials employing a negative substrate bias.
    Wen C; Xu H; Liu H; Li Z; Shen W
    Nanotechnology; 2013 Nov; 24(45):455602. PubMed ID: 24129585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical charge-carrier transport in Si nanocrystal/SiO2 multilayer structures.
    Osinniy V; Lysgaard S; Kolkovsky V; Pankratov V; Nylandsted Larsen A
    Nanotechnology; 2009 May; 20(19):195201. PubMed ID: 19420632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra- and inter-nanocrystal charge transport in nanocrystal films.
    Aigner W; Bienek O; Falcão BP; Ahmed SU; Wiggers H; Stutzmann M; Pereira RN
    Nanoscale; 2018 May; 10(17):8042-8057. PubMed ID: 29670986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescent silicon quantum dots in core/shell configuration: synthesis by low temperature and spontaneous plasma processing.
    Das D; Samanta A
    Nanotechnology; 2011 Feb; 22(5):055601. PubMed ID: 21178231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The Influence of Oxygen Incorporation on the Microstructure and Band Gap Properties of the nc-Si Films].
    Jiang ZY; Yu W; Liu J-; Liu HX; Yin CC; Ding WG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):1084-8. PubMed ID: 26197606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on the phase and optical properties of nc-Si films prepared by low temperature aluminum induced crystallization].
    Duan LF; Yang W; Yang PZ; Song ZN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2169-74. PubMed ID: 25474956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral electrical transport, optical properties and photocurrent measurements in two-dimensional arrays of silicon nanocrystals embedded in SiO2.
    Gardelis S; Manousiadis P; Nassiopoulou AG
    Nanoscale Res Lett; 2011 Mar; 6(1):227. PubMed ID: 21711736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the enhancement of electrical conductivity of nanocrystalline silicon due to hydrogen plasma treatment.
    Dutta P; Kumar M; Rathi M; Ahrenkiel SP; Paul S; Galipeau D; Bommisetty V
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6711-20. PubMed ID: 24245133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge conduction and breakdown mechanisms in self-assembled nanodielectrics.
    DiBenedetto SA; Facchetti A; Ratner MA; Marks TJ
    J Am Chem Soc; 2009 May; 131(20):7158-68. PubMed ID: 19408943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement in electron transport and light emission efficiency of a Si nanocrystal light-emitting diode by a SiCN/SiC superlattice structure.
    Huh C; Kim BK; Park BJ; Jang EH; Kim SH
    Nanoscale Res Lett; 2013 Jan; 8(1):14. PubMed ID: 23289520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the structure on luminescent characteristics of SRO-based light emitting capacitors.
    Palacios-Huerta L; Cabañas-Tay SA; Luna-López JA; Aceves-Mijares M; Coyopol A; Morales-Sánchez A
    Nanotechnology; 2015 Oct; 26(39):395202. PubMed ID: 26360552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.
    Wang F; Zhang X; Wang L; Jiang Y; Wei C; Xu S; Zhao Y
    Phys Chem Chem Phys; 2014 Oct; 16(37):20202-8. PubMed ID: 25138166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid solar cells from MDMO-PPV and silicon nanocrystals.
    Liu CY; Kortshagen UR
    Nanoscale; 2012 Jul; 4(13):3963-8. PubMed ID: 22660893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.