These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26063100)

  • 1. Copper-Free Postsynthetic Labeling of Nucleic Acids by Means of Bioorthogonal Reactions.
    Merkel M; Peewasan K; Arndt S; Ploschik D; Wagenknecht HA
    Chembiochem; 2015 Jul; 16(11):1541-53. PubMed ID: 26063100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions.
    Krell K; Harijan D; Ganz D; Doll L; Wagenknecht HA
    Bioconjug Chem; 2020 Apr; 31(4):990-1011. PubMed ID: 32175732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scope and Limitations of Typical Copper-Free Bioorthogonal Reactions with DNA: Reactive 2'-Deoxyuridine Triphosphates for Postsynthetic Labeling.
    Merkel M; Arndt S; Ploschik D; Cserép GB; Wenge U; Kele P; Wagenknecht HA
    J Org Chem; 2016 Sep; 81(17):7527-38. PubMed ID: 27513089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry.
    Ganz D; Harijan D; Wagenknecht HA
    RSC Chem Biol; 2020 Aug; 1(3):86-97. PubMed ID: 34458750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2'-Modified Thymidines with Bioorthogonal Cyclopropene or Sydnone as Building Blocks for Copper-Free Postsynthetic Functionalization of Chemically Synthesized Oligonucleotides.
    Bristiel A; Cadinot M; Pizzonero M; Taran F; Urban D; Guignard R; Guianvarc'h D
    Bioconjug Chem; 2023 Sep; 34(9):1613-1621. PubMed ID: 37669427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific one-pot triple click labeling for DNA and RNA.
    Winz ML; Linder EC; Becker J; Jäschke A
    Chem Commun (Camb); 2018 Oct; 54(83):11781-11784. PubMed ID: 30277234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Photoclick" postsynthetic modification of DNA.
    Arndt S; Wagenknecht HA
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14580-2. PubMed ID: 25359534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of novel nucleoside 5'-triphosphates and phosphoramidites containing alkyne or amino groups for the postsynthetic functionalization of nucleic acids.
    Vasilyeva SV; Budilkin BI; Konevetz DA; Silnikov VN
    Nucleosides Nucleotides Nucleic Acids; 2011 Oct; 30(10):753-67. PubMed ID: 21967287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1,2,4-Triazine-Modified 2'-Deoxyuridine Triphosphate for Efficient Bioorthogonal Fluorescent Labeling of DNA.
    Peewasan K; Wagenknecht HA
    Chembiochem; 2017 Aug; 18(15):1473-1476. PubMed ID: 28485853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vinylboronic Acids as Fast Reacting, Synthetically Accessible, and Stable Bioorthogonal Reactants in the Carboni-Lindsey Reaction.
    Eising S; Lelivelt F; Bonger KM
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12243-7. PubMed ID: 27605057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diels-Alder cycloadditions on synthetic RNA in mammalian cells.
    Pyka AM; Domnick C; Braun F; Kath-Schorr S
    Bioconjug Chem; 2014 Aug; 25(8):1438-43. PubMed ID: 25068829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-synthetic modification of DNA by inverse-electron-demand Diels-Alder reaction.
    Schoch J; Wiessler M; Jäschke A
    J Am Chem Soc; 2010 Jul; 132(26):8846-7. PubMed ID: 20550120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry.
    Pagel M
    J Pept Sci; 2019 Jan; 25(1):e3141. PubMed ID: 30585397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry.
    George JT; Srivatsan SG
    Methods; 2017 May; 120():28-38. PubMed ID: 28215631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple Orthogonal Labeling of Glycans by Applying Photoclick Chemistry.
    Schart VF; Hassenrück J; Späte AK; Dold JEGA; Fahrner R; Wittmann V
    Chembiochem; 2019 Jan; 20(2):166-171. PubMed ID: 30499611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates.
    Jayaprakash KN; Peng CG; Butler D; Varghese JP; Maier MA; Rajeev KG; Manoharan M
    Org Lett; 2010 Dec; 12(23):5410-3. PubMed ID: 21049912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclopropenes as Chemical Reporters for Dual Bioorthogonal and Orthogonal Metabolic Labeling of DNA.
    Seul N; Lamade D; Stoychev P; Mijic M; Michenfelder RT; Rieger L; Geng P; Wagenknecht HA
    Angew Chem Int Ed Engl; 2024 May; 63(22):e202403044. PubMed ID: 38517205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.
    Baalmann M; Best M; Wombacher R
    Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triazine-Modified 7-Deaza-2'-deoxyadenosines: Better Suited for Bioorthogonal Labeling of DNA by PCR than 2'-Deoxyuridines.
    Reisacher U; Groitl B; Strasser R; Cserép GB; Kele P; Wagenknecht HA
    Bioconjug Chem; 2019 Jun; 30(6):1773-1780. PubMed ID: 31117344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry.
    Schoch J; Staudt M; Samanta A; Wiessler M; Jäschke A
    Bioconjug Chem; 2012 Jul; 23(7):1382-6. PubMed ID: 22709568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.