These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26063127)

  • 1. Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism.
    Ding EX; Wang J; Geng HZ; Wang WY; Wang Y; Zhang ZC; Luo ZJ; Yang HJ; Zou CX; Kang J; Pan L
    Sci Rep; 2015 Jun; 5():11281. PubMed ID: 26063127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K and Au bicatalyst assisted growth of carbon nanocoils from acetylene: effect of deposition parameters on field emission properties.
    Tsou TY; Lee CY; Chiu HT
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6505-11. PubMed ID: 23167627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Growth of High-Strength Carbon Nanocoils in Molten Carbonates.
    Yu R; Xiang J; Du K; Deng B; Chen D; Yin H; Liu Z; Wang D
    Nano Lett; 2022 Jan; 22(1):97-104. PubMed ID: 34958590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of Carbon Nanocoils by Porous α-Fe
    Zhao Y; Wang J; Huang H; Cong T; Yang S; Chen H; Qin J; Usman M; Fan Z; Pan L
    Nanomicro Lett; 2020 Jan; 12(1):23. PubMed ID: 34138078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors governing the growth mode of carbon nanotubes on carbon-based substrates.
    Kim KJ; Yu WR; Youk JH; Lee J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14041-8. PubMed ID: 22990211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of single-walled carbon nanotubes through micropores of surface-treated zeolites by catalyst-supported chemical vapor deposition.
    Kobayashi K; Kitaura R; Shinohara H
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3919-23. PubMed ID: 20355391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical chrysanthemum-flower-like carbon nanomaterials grown by chemical vapor deposition.
    Ding EX; Geng HZ; Wang J; Luo ZJ; Li G; Wang WY; Li LG; Yang HJ; Da SX; Wang J; Jiang H; Kauppinen EI
    Nanotechnology; 2016 Feb; 27(8):085602. PubMed ID: 26808687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-Controlled Growth of Carbon Nanostructures: Yield and Mechanism.
    Ma Y; Sun X; Yang N; Xia J; Zhang L; Jiang X
    Chemistry; 2015 Aug; 21(35):12370-5. PubMed ID: 26140507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition.
    Jodin L; Dupuis AC; Rouvière E; Reiss P
    J Phys Chem B; 2006 Apr; 110(14):7328-33. PubMed ID: 16599506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Various conformations of carbon nanocoils prepared by supported Ni-Fe/molecular sieve catalyst.
    Yang S; Chen X; Takeuchi K; Motojima S
    J Nanosci Nanotechnol; 2006 Jan; 6(1):141-5. PubMed ID: 16573085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale and controllable synthesis of metal-free nitrogen-doped carbon nanofibers and nanocoils over water-soluble Na2CO3.
    Ding Q; Song X; Yao X; Qi X; Au CT; Zhong W; Du Y
    Nanoscale Res Lett; 2013 Dec; 8(1):545. PubMed ID: 24369821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process.
    Elliott JA; Hamm M; Shibuta Y
    J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement.
    Tang N; Kuo W; Jeng C; Wang L; Lin K; Du Y
    ACS Nano; 2010 Feb; 4(2):781-8. PubMed ID: 20092354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of carbon tubule nanocoils using Fe-In-Sn-O fine particles as catalysts.
    Okazaki N; Hosokawa S; Goto T; Nakayama Y
    J Phys Chem B; 2005 Sep; 109(37):17366-71. PubMed ID: 16853220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose Nanocrystals--Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance.
    Chen Q; Garcia RP; Munoz J; Pérez de Larraya U; Garmendia N; Yao Q; Boccaccini AR
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24715-25. PubMed ID: 26460819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of metallic Ni nanoparticles on titania surfaces by chemical vapor reductive deposition method.
    Yoshinaga M; Takahashi H; Yamamoto K; Muramatsu A; Morikawa T
    J Colloid Interface Sci; 2007 May; 309(1):149-54. PubMed ID: 17362976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests on conductive Ti/Cu supports.
    Sugime H; Esconjauregui S; D'Arsié L; Yang J; Makaryan T; Robertson J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15440-7. PubMed ID: 25126887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.