These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26063127)

  • 21. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles.
    Page AJ; Yamane H; Ohta Y; Irle S; Morokuma K
    J Am Chem Soc; 2010 Nov; 132(44):15699-707. PubMed ID: 20961094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites.
    Voronova MI; Surov OV; Guseinov SS; Barannikov VP; Zakharov AG
    Carbohydr Polym; 2015 Oct; 130():440-7. PubMed ID: 26076645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid and scalable reduction of dense surface-supported metal-oxide catalyst with hydrazine vapor.
    Pint CL; Kim SM; Stach EA; Hauge RH
    ACS Nano; 2009 Jul; 3(7):1897-905. PubMed ID: 19485412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.
    Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL
    J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction and reconstruction of Co3O4 nanocubes upon carbon deposition.
    Feng J; Zeng HC
    J Phys Chem B; 2005 Sep; 109(36):17113-9. PubMed ID: 16853183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron silicide root formation in carbon nanotubes grown by microwave PECVD.
    AuBuchon JF; Daraio C; Chen LH; Gapin AI; Jin S
    J Phys Chem B; 2005 Dec; 109(51):24215-9. PubMed ID: 16375415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ni3C-assisted growth of carbon nanofibres 300 °C by thermal CVD.
    Yu B; Wang S; Zhang Q; He Y; Huang H; Zou J
    Nanotechnology; 2014 Aug; 25(32):325602. PubMed ID: 25053710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth and structure of carbon nanotube Y-junctions.
    Li WZ; Pandey B; Liu YQ
    J Phys Chem B; 2006 Nov; 110(47):23694-700. PubMed ID: 17125329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis.
    Qin Y; Jiang X; Cui Z
    J Phys Chem B; 2005 Nov; 109(46):21749-54. PubMed ID: 16853825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silicide-induced multi-wall carbon nanotube growth on silicon nanowires.
    Lee JH; Lund IN; Eisenbraun ET; Geer RE
    Nanotechnology; 2011 Feb; 22(8):085603. PubMed ID: 21242615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.
    Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF
    ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents.
    Abitbol T; Palermo A; Moran-Mirabal JM; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3278-84. PubMed ID: 23952644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Splitting and flattening of helical carbon nanofibers by acid treatment.
    Yokota M; Hosokawa Y; Shinohara Y; Kawabata T; Takimoto K; Suda Y; Oke S; Takikawa H; Fujimura Y; Yamaura T; Itoh S; Ue H; Morioki M
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3910-4. PubMed ID: 20355389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.
    Tan Y; Xu C; Chen G; Liu Z; Ma M; Xie Q; Zheng N; Yao S
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2241-8. PubMed ID: 23425031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of catalyst particles for carbon nanocoil growth.
    Qian J; Pan L; Li D; Yu N; Liu D
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7366-9. PubMed ID: 21137936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition.
    Weng X; Burke RA; Redwing JM
    Nanotechnology; 2009 Feb; 20(8):085610. PubMed ID: 19417458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior.
    Cacciotti I; Fortunati E; Puglia D; Kenny JM; Nanni F
    Carbohydr Polym; 2014 Mar; 103():22-31. PubMed ID: 24528696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.