These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26063326)

  • 1. Prediction of complex human diseases from pathway-focused candidate markers by joint estimation of marker effects: case of chronic fatigue syndrome.
    Bhattacharjee M; Rajeevan MS; Sillanpää MJ
    Hum Genomics; 2015 Jun; 9(1):8. PubMed ID: 26063326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach to infer causal associations among gene expression, genotype variation, and disease.
    Lee E; Cho S; Kim K; Park T
    Genomics; 2009 Oct; 94(4):269-77. PubMed ID: 19540336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian biomarker identification based on marker-expression proteomics data.
    Bhattacharjee M; Botting CH; Sillanpää MJ
    Genomics; 2008 Dec; 92(6):384-92. PubMed ID: 18657605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of single-nucleotide polymorphisms (SNPs) to distinguish gene expression subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME).
    Shimosako N; Kerr JR
    J Clin Pathol; 2014 Dec; 67(12):1078-83. PubMed ID: 25240059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computationally efficient algorithm for genomic prediction using a Bayesian model.
    Wang T; Chen YP; Goddard ME; Meuwissen TH; Kemper KE; Hayes BJ
    Genet Sel Evol; 2015 Apr; 47(1):34. PubMed ID: 25926276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model.
    Moser G; Lee SH; Hayes BJ; Goddard ME; Wray NR; Visscher PM
    PLoS Genet; 2015 Apr; 11(4):e1004969. PubMed ID: 25849665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional polymorphism in the disrupted-in schizophrenia 1 gene is associated with chronic fatigue syndrome.
    Fukuda S; Hashimoto R; Ohi K; Yamaguti K; Nakatomi Y; Yasuda Y; Kamino K; Takeda M; Tajima S; Kuratsune H; Nishizawa Y; Watanabe Y
    Life Sci; 2010 May; 86(19-20):722-5. PubMed ID: 20227423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes.
    Kizilkaya K; Fernando RL; Garrick DJ
    J Anim Sci; 2010 Feb; 88(2):544-51. PubMed ID: 19820059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits.
    MacLeod IM; Bowman PJ; Vander Jagt CJ; Haile-Mariam M; Kemper KE; Chamberlain AJ; Schrooten C; Hayes BJ; Goddard ME
    BMC Genomics; 2016 Feb; 17():144. PubMed ID: 26920147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome.
    Lin E; Hsu SY
    Pharmacogenomics; 2009 Jan; 10(1):35-42. PubMed ID: 19102713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway-focused genetic evaluation of immune and inflammation related genes with chronic fatigue syndrome.
    Rajeevan MS; Dimulescu I; Murray J; Falkenberg VR; Unger ER
    Hum Immunol; 2015 Aug; 76(8):553-60. PubMed ID: 26116897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNP-based heritability estimation using a Bayesian approach.
    Krag K; Janss LL; Shariati MM; Berg P; Buitenhuis AJ
    Animal; 2013 Apr; 7(4):531-9. PubMed ID: 23177174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic prediction of breeding values using previously estimated SNP variances.
    Calus MP; Schrooten C; Veerkamp RF
    Genet Sel Evol; 2014 Sep; 46(1):52. PubMed ID: 25928875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic variation and human longevity.
    Soerensen M
    Dan Med J; 2012 May; 59(5):B4454. PubMed ID: 22549493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of Chronic Fatigue Syndrome (CFS) in Young CFS Patients Is Associated with the 5-HTTLPR and SNP rs25531 A > G Genotype.
    Meyer B; Nguyen CB; Moen A; Fagermoen E; Sulheim D; Nilsen H; Wyller VB; Gjerstad J
    PLoS One; 2015; 10(10):e0140883. PubMed ID: 26473596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial basis function regression methods for predicting quantitative traits using SNP markers.
    Long N; Gianola D; Rosa GJ; Weigel KA; Kranis A; González-Recio O
    Genet Res (Camb); 2010 Jun; 92(3):209-25. PubMed ID: 20667165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome.
    Rajeevan MS; Smith AK; Dimulescu I; Unger ER; Vernon SD; Heim C; Reeves WC
    Genes Brain Behav; 2007 Mar; 6(2):167-76. PubMed ID: 16740143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity to prior specification in Bayesian genome-based prediction models.
    Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome.
    Presson AP; Sobel EM; Papp JC; Suarez CJ; Whistler T; Rajeevan MS; Vernon SD; Horvath S
    BMC Syst Biol; 2008 Nov; 2():95. PubMed ID: 18986552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.