These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26063437)

  • 1. Identification of the Conformational transition pathway in PIP2 Opening Kir Channels.
    Li J; Lü S; Liu Y; Pang C; Chen Y; Zhang S; Yu H; Long M; Zhang H; Logothetis DE; Zhan Y; An H
    Sci Rep; 2015 Jun; 5():11289. PubMed ID: 26063437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cytosolic GH loop regulates the phosphatidylinositol 4,5-bisphosphate-induced gating kinetics of Kir2 channels.
    An HL; Lü SQ; Li JW; Meng XY; Zhan Y; Cui M; Long M; Zhang HL; Logothetis DE
    J Biol Chem; 2012 Dec; 287(50):42278-87. PubMed ID: 23033482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating.
    Wang S; Borschel WF; Heyman S; Hsu P; Nichols CG
    J Biol Chem; 2017 Jun; 292(24):10087-10096. PubMed ID: 28446610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.
    Lee SJ; Ren F; Zangerl-Plessl EM; Heyman S; Stary-Weinzinger A; Yuan P; Nichols CG
    J Gen Physiol; 2016 Sep; 148(3):227-37. PubMed ID: 27527100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three pairs of weak interactions precisely regulate the G-loop gate of Kir2.1 channel.
    Li J; Xiao S; Xie X; Zhou H; Pang C; Li S; Zhang H; Logothetis DE; Zhan Y; An H
    Proteins; 2016 Dec; 84(12):1929-1937. PubMed ID: 27699887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2.
    Hansen SB; Tao X; MacKinnon R
    Nature; 2011 Aug; 477(7365):495-8. PubMed ID: 21874019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels.
    Zangerl-Plessl EM; Lee SJ; Maksaev G; Bernsteiner H; Ren F; Yuan P; Stary-Weinzinger A; Nichols CG
    J Gen Physiol; 2020 Jan; 152(1):. PubMed ID: 31744859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H bonding at the helix-bundle crossing controls gating in Kir potassium channels.
    Rapedius M; Fowler PW; Shang L; Sansom MS; Tucker SJ; Baukrowitz T
    Neuron; 2007 Aug; 55(4):602-14. PubMed ID: 17698013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulations of KirBac1.1 Mutants Reveal Global Gating Changes of Kir Channels.
    Linder T; Wang S; Zangerl-Plessl EM; Nichols CG; Stary-Weinzinger A
    J Chem Inf Model; 2015 Apr; 55(4):814-22. PubMed ID: 25794351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis for Differences in Dynamics Induced by Leu Versus Ile Residues in the CD Loop of Kir Channels.
    Lü S; An H; Zhang H; Long M
    Mol Neurobiol; 2016 Nov; 53(9):5948-5961. PubMed ID: 26520451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of PIP2 activation gate in inward rectifier K+ channels.
    Xiao J; Zhen XG; Yang J
    Nat Neurosci; 2003 Aug; 6(8):811-8. PubMed ID: 12858177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
    Haider S; Grottesi A; Hall BA; Ashcroft FM; Sansom MS
    Biophys J; 2005 May; 88(5):3310-20. PubMed ID: 15749783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S
    Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in Nature Conferred a High Affinity Phosphatidylinositol 4,5-Bisphosphate-binding Site in Vertebrate Inwardly Rectifying Potassium Channels.
    Tang QY; Larry T; Hendra K; Yamamoto E; Bell J; Cui M; Logothetis DE; Boland LM
    J Biol Chem; 2015 Jul; 290(27):16517-29. PubMed ID: 25957411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-basic amino acids in the ROMK1 channels via an appropriate distance modulate PIP2 regulated pHi-gating.
    Lee CH; Huang PT; Liou HH; Lin MY; Lou KL; Chen CY
    Biochem Biophys Res Commun; 2016 Apr; 473(1):303-310. PubMed ID: 27016482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimodal regulation of an Elk subfamily K+ channel by phosphatidylinositol 4,5-bisphosphate.
    Li X; Anishkin A; Liu H; van Rossum DB; Chintapalli SV; Sassic JK; Gallegos D; Pivaroff-Ward K; Jegla T
    J Gen Physiol; 2015 Nov; 146(5):357-74. PubMed ID: 26503718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel.
    Meng XY; Zhang HX; Logothetis DE; Cui M
    Biophys J; 2012 May; 102(9):2049-59. PubMed ID: 22824268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels.
    Xie LH; John SA; Ribalet B; Weiss JN
    J Gen Physiol; 2005 Dec; 126(6):541-9. PubMed ID: 16316973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel.
    Meng XY; Liu S; Cui M; Zhou R; Logothetis DE
    Sci Rep; 2016 Jul; 6():29399. PubMed ID: 27439597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.