BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26063514)

  • 1. Evaluation of low-cost materials for sorption of hydrophobic organic pollutants in stormwater.
    Björklund K; Li L
    J Environ Manage; 2015 Aug; 159():106-114. PubMed ID: 26063514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of organic pollutants frequently detected in stormwater: evaluation of five potential sorbents.
    Björklund K; Li L
    Environ Technol; 2018 Sep; 39(18):2335-2345. PubMed ID: 28701071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters.
    Kalmykova Y; Moona N; Strömvall AM; Björklund K
    Water Res; 2014 Jun; 56():246-57. PubMed ID: 24686091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge.
    Björklund K; Li LY
    J Environ Manage; 2017 Jul; 197():490-497. PubMed ID: 28412620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater.
    Kalmykova Y; Björklund K; Strömvall AM; Blom L
    Water Res; 2013 Mar; 47(3):1317-28. PubMed ID: 23295068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous removal of multiple polycyclic aromatic hydrocarbons (PAHs) from urban stormwater using low-cost agricultural/industrial byproducts as sorbents.
    Esfandiar N; Suri R; McKenzie ER
    Chemosphere; 2021 Jul; 274():129812. PubMed ID: 33582536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of DOM and hydrophobic organic compounds onto sewage-based activated carbon.
    Björklund K; Li LY
    Water Sci Technol; 2016; 74(4):852-60. PubMed ID: 27533860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption capacity of plastic debris for hydrophobic organic chemicals.
    Lee H; Shim WJ; Kwon JH
    Sci Total Environ; 2014 Feb; 470-471():1545-52. PubMed ID: 24012321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of cadmium from aqueous solutions by perlite.
    Mathialagan T; Viraraghavan T
    J Hazard Mater; 2002 Oct; 94(3):291-303. PubMed ID: 12220830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioretention soil capacity for removing nutrients, metals, and polycyclic aromatic hydrocarbons; roles of co-contaminants, pH, salinity and dissolved organic carbon.
    Esfandiar N; McKenzie ER
    J Environ Manage; 2022 Dec; 324():116314. PubMed ID: 36166865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a modified flory-huggins concept for description of hydrophobic organic compound sorption on dissolved humic substances.
    Georgi A; Kopinke FD
    Environ Toxicol Chem; 2002 Sep; 21(9):1766-74. PubMed ID: 12206414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff.
    Soleimanifar H; Deng Y; Wu L; Sarkar D
    Chemosphere; 2016 Jul; 154():289-292. PubMed ID: 27060636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of organic contaminants in bioretention medium amended with activated carbon from sewage sludge.
    Björklund K; Li L
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19167-19180. PubMed ID: 28664490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Surface organic modification of acid vermiculite and its adsorption of hydrophobic micro pollutants in aqueous solutions].
    Jiang ZM; Yu XB; Hu Y; Ren Y; Li XH; Wei CH
    Huan Jing Ke Xue; 2013 Jul; 34(7):2686-93. PubMed ID: 24028000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of aqueous-phase polynuclear aromatic hydrocarbons using aspen wood fibers.
    Boving TB; Zhang W
    Chemosphere; 2004 Feb; 54(7):831-9. PubMed ID: 14637340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.
    Fu H; Wei C; Qu X; Li H; Zhu D
    Environ Pollut; 2018 Jan; 232():402-410. PubMed ID: 28966024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of a support matrix for the removal of some phenoxyacetic compounds in constructed wetlands systems.
    Dordio AV; Teimão J; Ramalho I; Carvalho AJ; Candeias AJ
    Sci Total Environ; 2007 Jul; 380(1-3):237-46. PubMed ID: 17379272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent.
    Sumathi KM; Mahimairaja S; Naidu R
    Bioresour Technol; 2005 Feb; 96(3):309-16. PubMed ID: 15474931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of hydrophobic organic compounds on natural sorbents and organoclays from aqueous and non-aqueous solutions: a mini-review.
    Moyo F; Tandlich R; Wilhelmi BS; Balaz S
    Int J Environ Res Public Health; 2014 May; 11(5):5020-48. PubMed ID: 24821385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.
    Reddy KR; Xie T; Dastgheibi S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(5):524-39. PubMed ID: 24410683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.