These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 26063650)

  • 1. Probing the ligand recognition and discrimination environment of the globin-coupled oxygen sensor protein YddV by FTIR and time-resolved step-scan FTIR spectroscopy.
    Pavlou A; Martínková M; Shimizu T; Kitanishi K; Stranava M; Loullis A; Pinakoulaki E
    Phys Chem Chem Phys; 2015 Jul; 17(26):17007-15. PubMed ID: 26063650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Important roles of Tyr43 at the putative heme distal side in the oxygen recognition and stability of the Fe(II)-O2 complex of YddV, a globin-coupled heme-based oxygen sensor diguanylate cyclase.
    Kitanishi K; Kobayashi K; Kawamura Y; Ishigami I; Ogura T; Nakajima K; Igarashi J; Tanaka A; Shimizu T
    Biochemistry; 2010 Dec; 49(49):10381-93. PubMed ID: 21067162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leu65 in the heme distal side is critical for the stability of the Fe(II)-O2 complex of YddV, a globin-coupled oxygen sensor diguanylate cyclase.
    Nakajima K; Kitanishi K; Kobayashi K; Kobayashi N; Igarashi J; Shimizu T
    J Inorg Biochem; 2012 Mar; 108():163-70. PubMed ID: 22005448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aldoxime dehydratase: probing the heme environment involved in the synthesis of the carbon-nitrogen triple bond.
    Pinakoulaki E; Koutsoupakis C; Sawai H; Pavlou A; Kato Y; Asano Y; Aono S
    J Phys Chem B; 2011 Nov; 115(44):13012-8. PubMed ID: 21942263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of a globin-coupled diguanylate cyclase, YddV: Effects of heme iron redox state, axial ligands, and heme distal mutations on catalysis.
    Lengalova A; Fojtikova-Proskova V; Vavra J; Martínek V; Stranava M; Shimizu T; Martinkova M
    J Inorg Biochem; 2019 Dec; 201():110833. PubMed ID: 31520879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction.
    Stranava M; Martínková M; Stiborová M; Man P; Kitanishi K; Muchová L; Vítek L; Martínek V; Shimizu T
    J Inorg Biochem; 2014 Nov; 140():29-38. PubMed ID: 25046385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Role of the Heme Distal and Proximal Environment in Ligand Dynamics in the Signal Transducer Protein HemAT by Time-Resolved Step-Scan FTIR and Resonance Raman Spectroscopy.
    Pavlou A; Loullis A; Yoshimura H; Aono S; Pinakoulaki E
    Biochemistry; 2017 Oct; 56(40):5309-5317. PubMed ID: 28876054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast Spectroscopy Evidence for Picosecond Ligand Exchange at the Binding Site of a Heme Protein: Heme-Based Sensor YddV.
    Lambry JC; Stranava M; Lobato L; Martinkova M; Shimizu T; Liebl U; Vos MH
    J Phys Chem Lett; 2016 Jan; 7(1):69-74. PubMed ID: 26651267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure effects reveal that changes in the redox states of the heme iron complexes in the sensor domains of two heme-based oxygen sensor proteins, EcDOS and YddV, have profound effects on their flexibility.
    Anzenbacher P; Marchal S; Palacký J; Anzenbacherová E; Domaschke T; Lange R; Shimizu T; Kitanishi K; Stranava M; Stiborová M; Martinkova M
    FEBS J; 2014 Dec; 281(23):5208-19. PubMed ID: 25238584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition and discrimination of gases by the oxygen-sensing signal transducer protein HemAT as revealed by FTIR spectroscopy.
    Pinakoulaki E; Yoshimura H; Yoshioka S; Aono S; Varotsis C
    Biochemistry; 2006 Jun; 45(25):7763-6. PubMed ID: 16784227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong ligand-protein interactions revealed by ultrafast infrared spectroscopy of CO in the heme pocket of the oxygen sensor FixL.
    Nuernberger P; Lee KF; Bonvalet A; Bouzhir-Sima L; Lambry JC; Liebl U; Joffre M; Vos MH
    J Am Chem Soc; 2011 Nov; 133(43):17110-3. PubMed ID: 21970443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand binding to heme proteins: a comparison of cytochrome c variants with globins.
    Nienhaus K; Zosel F; Nienhaus GU
    J Phys Chem B; 2012 Oct; 116(40):12180-8. PubMed ID: 22978708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arg97 at the heme-distal side of the isolated heme-bound PAS domain of a heme-based oxygen sensor from Escherichia coli (Ec DOS) plays critical roles in autoxidation and binding to gases, particularly O2.
    Ishitsuka Y; Araki Y; Tanaka A; Igarashi J; Ito O; Shimizu T
    Biochemistry; 2008 Aug; 47(34):8874-84. PubMed ID: 18672892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved resonance Raman and time-resolved step-scan FTIR studies of nitric oxide reductase from Paracoccus denitrificans: comparison of the heme b3-FeB site to that of the heme-CuB in oxidases.
    Pinakoulaki E; Varotsis C
    Biochemistry; 2003 Dec; 42(50):14856-61. PubMed ID: 14674760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two ligand-binding sites in the O2-sensing signal transducer HemAT: implications for ligand recognition/discrimination and signaling.
    Pinakoulaki E; Yoshimura H; Daskalakis V; Yoshioka S; Aono S; Varotsis C
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14796-801. PubMed ID: 17003124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for ligand discrimination and response initiation in the heme-based oxygen sensor FixL.
    Rodgers KR; Lukat-Rodgers GS; Barron JA
    Biochemistry; 1996 Jul; 35(29):9539-48. PubMed ID: 8755735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of the proximal and distal histidine environment of cytoglobin and neuroglobin.
    Sawai H; Makino M; Mizutani Y; Ohta T; Sugimoto H; Uno T; Kawada N; Yoshizato K; Kitagawa T; Shiro Y
    Biochemistry; 2005 Oct; 44(40):13257-65. PubMed ID: 16201751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Step-scan time-resolved FTIR spectroscopy of cytochrome P-450cam carbon monoxide complex: a salt link involved in the ligand-rebinding process.
    Contzen J; Jung C
    Biochemistry; 1998 Mar; 37(13):4317-24. PubMed ID: 9556346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand binding dynamics to the heme domain of the oxygen sensor Dos from Escherichia coli.
    Liebl U; Bouzhir-Sima L; Kiger L; Marden MC; Lambry JC; Négrerie M; Vos MH
    Biochemistry; 2003 Jun; 42(21):6527-35. PubMed ID: 12767236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.