These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26063704)
1. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. Karimi Galougahi K; Liu CC; Garcia A; Fry NA; Hamilton EJ; Figtree GA; Rasmussen HH Am J Physiol Cell Physiol; 2015 Sep; 309(5):C286-95. PubMed ID: 26063704 [TBL] [Abstract][Full Text] [Related]
2. β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia. Karimi Galougahi K; Liu CC; Garcia A; Gentile C; Fry NA; Hamilton EJ; Hawkins CL; Figtree GA J Am Heart Assoc; 2016 Feb; 5(2):. PubMed ID: 26896479 [TBL] [Abstract][Full Text] [Related]
3. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition. Chia KK; Liu CC; Hamilton EJ; Garcia A; Fry NA; Hannam W; Figtree GA; Rasmussen HH Am J Physiol Cell Physiol; 2015 Aug; 309(4):C239-50. PubMed ID: 26084308 [TBL] [Abstract][Full Text] [Related]
4. β3-Adrenoceptor, glutathionylation, and diabetic cardiomyopathy. Focus on "β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade". Black SM Am J Physiol Cell Physiol; 2015 Sep; 309(5):C283-5. PubMed ID: 26179604 [No Abstract] [Full Text] [Related]
5. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling. Galougahi KK; Liu CC; Garcia A; Fry NA; Hamilton EJ; Rasmussen HH; Figtree GA J Physiol; 2013 Jun; 591(12):2999-3015. PubMed ID: 23587884 [TBL] [Abstract][Full Text] [Related]
6. β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Bundgaard H; Liu CC; Garcia A; Hamilton EJ; Huang Y; Chia KK; Hunyor SN; Figtree GA; Rasmussen HH Circulation; 2010 Dec; 122(25):2699-708. PubMed ID: 21135361 [TBL] [Abstract][Full Text] [Related]
7. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction. Liu CC; Karimi Galougahi K; Weisbrod RM; Hansen T; Ravaie R; Nunez A; Liu YB; Fry N; Garcia A; Hamilton EJ; Sweadner KJ; Cohen RA; Figtree GA Free Radic Biol Med; 2013 Dec; 65():563-572. PubMed ID: 23816524 [TBL] [Abstract][Full Text] [Related]
8. Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase. White CN; Figtree GA; Liu CC; Garcia A; Hamilton EJ; Chia KK; Rasmussen HH Am J Physiol Cell Physiol; 2009 Apr; 296(4):C693-700. PubMed ID: 19193863 [TBL] [Abstract][Full Text] [Related]
9. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity. White CN; Liu CC; Garcia A; Hamilton EJ; Chia KK; Figtree GA; Rasmussen HH J Biol Chem; 2010 Apr; 285(18):13712-20. PubMed ID: 20194511 [TBL] [Abstract][Full Text] [Related]
10. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation. Figtree GA; Liu CC; Bibert S; Hamilton EJ; Garcia A; White CN; Chia KK; Cornelius F; Geering K; Rasmussen HH Circ Res; 2009 Jul; 105(2):185-93. PubMed ID: 19542013 [TBL] [Abstract][Full Text] [Related]
11. Targeting Cardiac Myocyte Na Fry NAS; Liu CC; Garcia A; Hamilton EJ; Karimi Galougahi K; Kim YJ; Whalley DW; Bundgaard H; Rasmussen HH Circ Heart Fail; 2020 Sep; 13(9):e006753. PubMed ID: 32842758 [TBL] [Abstract][Full Text] [Related]
12. Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump. Liu CC; Garcia A; Mahmmoud YA; Hamilton EJ; Galougahi KK; Fry NA; Figtree GA; Cornelius F; Clarke RJ; Rasmussen HH J Biol Chem; 2012 Apr; 287(15):12353-64. PubMed ID: 22354969 [TBL] [Abstract][Full Text] [Related]
13. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion. Garcia A; Liu CC; Cornelius F; Clarke RJ; Rasmussen HH Biophys J; 2016 Mar; 110(5):1099-109. PubMed ID: 26958887 [TBL] [Abstract][Full Text] [Related]
14. FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit. Bibert S; Liu CC; Figtree GA; Garcia A; Hamilton EJ; Marassi FM; Sweadner KJ; Cornelius F; Geering K; Rasmussen HH J Biol Chem; 2011 May; 286(21):18562-72. PubMed ID: 21454534 [TBL] [Abstract][Full Text] [Related]
15. Redox-dependent regulation of the Na⁺-K⁺ pump: new twists to an old target for treatment of heart failure. Liu CC; Fry NA; Hamilton EJ; Chia KK; Garcia A; Karimi Galougahi K; Figtree GA; Clarke RJ; Bundgaard H; Rasmussen HH J Mol Cell Cardiol; 2013 Aug; 61():94-101. PubMed ID: 23727392 [TBL] [Abstract][Full Text] [Related]
17. Beta3-adrenoceptor agonist stimulation of the Na+, K+ -pump in rat skeletal muscle is mediated by beta2- rather than beta3-adrenoceptors. Murphy KT; Bundgaard H; Clausen T Br J Pharmacol; 2006 Nov; 149(6):635-46. PubMed ID: 17016512 [TBL] [Abstract][Full Text] [Related]
18. S-glutathionylation of the Na+-K+ Pump: A Novel Redox Mechanism in Preeclampsia. Liu CC; Zhang Y; Makris A; Rasmussen HH; Hennessy A J Clin Endocrinol Metab; 2021 Mar; 106(4):1091-1100. PubMed ID: 33382878 [TBL] [Abstract][Full Text] [Related]
19. Role of the β Kayki Mutlu G; Arioglu Inan E; Karaomerlioglu I; Altan VM; Yersal N; Korkusuz P; Rocchetti M; Zaza A Mol Cell Biochem; 2018 Sep; 446(1-2):149-160. PubMed ID: 29363058 [TBL] [Abstract][Full Text] [Related]
20. The β3 Adrenergic Receptor Agonist BRL37344 Exacerbates Atrial Structural Remodeling Through iNOS Uncoupling in Canine Models of Atrial Fibrillation. Wang X; Wang R; Liu G; Dong J; Zhao G; Tian J; Sun J; Jia X; Wei L; Wang Y; Li W Cell Physiol Biochem; 2016; 38(2):514-30. PubMed ID: 26828873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]