These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26063815)

  • 1. Properties of neuronal facilitation that improve target tracking in natural pursuit simulations.
    Bagheri ZM; Wiederman SD; Cazzolato BS; Grainger S; O'Carroll DC
    J R Soc Interface; 2015 Jul; 12(108):20150083. PubMed ID: 26063815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments.
    Bagheri ZM; Cazzolato BS; Grainger S; O'Carroll DC; Wiederman SD
    J Neural Eng; 2017 Aug; 14(4):046030. PubMed ID: 28704206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of features in natural scenes by a dragonfly neuron.
    Wiederman SD; O'Carroll DC
    J Neurosci; 2011 May; 31(19):7141-4. PubMed ID: 21562276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of an insect-inspired target tracker in natural conditions.
    Bagheri ZM; Wiederman SD; Cazzolato BS; Grainger S; O'Carroll DC
    Bioinspir Biomim; 2017 Feb; 12(2):025006. PubMed ID: 28112099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local motion adaptation enhances the representation of spatial structure at EMD arrays.
    Li J; Lindemann JP; Egelhaaf M
    PLoS Comput Biol; 2017 Dec; 13(12):e1005919. PubMed ID: 29281631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal statistics of natural image sequences generated by movements with insect flight characteristics.
    Schwegmann A; Lindemann JP; Egelhaaf M
    PLoS One; 2014; 9(10):e110386. PubMed ID: 25340761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for the detection of moving targets in visual clutter inspired by insect physiology.
    Wiederman SD; Shoemaker PA; O'Carroll DC
    PLoS One; 2008 Jul; 3(7):e2784. PubMed ID: 18665213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Nonlinear Dendritic Processing of Facilitation in a Dragonfly Target-Tracking Neuron.
    Bekkouche BMB; Shoemaker PA; Fabian JM; Rigosi E; Wiederman SD; O'Carroll DC
    Front Neural Circuits; 2021; 15():684872. PubMed ID: 34483847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths.
    Dunbier JR; Wiederman SD; Shoemaker PA; O'Carroll DC
    Front Neural Circuits; 2012; 6():79. PubMed ID: 23112764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target detection in insects: optical, neural and behavioral optimizations.
    Gonzalez-Bellido PT; Fabian ST; Nordström K
    Curr Opin Neurobiol; 2016 Dec; 41():122-128. PubMed ID: 27662056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes.
    Bertrand OJ; Lindemann JP; Egelhaaf M
    PLoS Comput Biol; 2015 Nov; 11(11):e1004339. PubMed ID: 26583771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dragonfly Neurons Selectively Attend to Targets Within Natural Scenes.
    Evans BJE; O'Carroll DC; Fabian JM; Wiederman SD
    Front Cell Neurosci; 2022; 16():857071. PubMed ID: 35450210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial facilitation by a high-performance dragonfly target-detecting neuron.
    Nordström K; Bolzon DM; O'Carroll DC
    Biol Lett; 2011 Aug; 7(4):588-92. PubMed ID: 21270026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired modeling and implementation of the ocelli visual system of flying insects.
    Gremillion G; Humbert JS; Krapp HG
    Biol Cybern; 2014 Dec; 108(6):735-46. PubMed ID: 25217116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic tracking of free-flying insects using a cable-driven robot.
    Pannequin R; Jouaiti M; Boutayeb M; Lucas P; Martinez D
    Sci Robot; 2020 Jun; 5(43):. PubMed ID: 33022614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Computational Models and Applications of Insect Visual Systems for Motion Perception: A Review.
    Fu Q; Wang H; Hu C; Yue S
    Artif Life; 2019; 25(3):263-311. PubMed ID: 31397604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optic flow-based collision-free strategies: From insects to robots.
    Serres JR; Ruffier F
    Arthropod Struct Dev; 2017 Sep; 46(5):703-717. PubMed ID: 28655645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Directionally Selective Small Target Motion Detecting Visual Neural Network in Cluttered Backgrounds.
    Wang H; Peng J; Yue S
    IEEE Trans Cybern; 2020 Apr; 50(4):1541-1555. PubMed ID: 30296246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of motion inhibition for the suppression of false positives in biologically inspired small target detection algorithms from a moving platform.
    Melville-Smith A; Finn A; Uzair M; Brinkworth RSA
    Biol Cybern; 2022 Dec; 116(5-6):661-685. PubMed ID: 36305942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinotopic organization of small-field-target-detecting neurons in the insect visual system.
    Barnett PD; Nordström K; O'carroll DC
    Curr Biol; 2007 Apr; 17(7):569-78. PubMed ID: 17363248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.