These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26064476)

  • 41. [Association of polymorphisms of 1772 (C-->T) and 1790 (G-->A) in HIF1A gene with hypoxia adaptation in high altitude in Sherpas].
    Liu KX; Sun XC; Wang SW; Hu B
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2007 Apr; 24(2):230-2. PubMed ID: 17407091
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polygraphy of sleep at altitudes between 5300 m and 7500 m during an expedition to Mt. Everest (MedEx 2006).
    Mees K; de la Chaux R
    Wilderness Environ Med; 2009; 20(2):161-5. PubMed ID: 19594205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-intensity intermittent exercise increases pulmonary interstitial edema at altitude but not at simulated altitude.
    Edsell ME; Wimalasena YH; Malein WL; Ashdown KM; Gallagher CA; Imray CH; Wright AD; Myers SD;
    Wilderness Environ Med; 2014 Dec; 25(4):409-15. PubMed ID: 25443761
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energy metabolism and the high-altitude environment.
    Murray AJ
    Exp Physiol; 2016 Jan; 101(1):23-7. PubMed ID: 26315373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exercise limb blood flow response to acute and chronic hypoxia in Danish lowlanders and Aymara natives.
    Rådegran G
    Acta Physiol (Oxf); 2008 Apr; 192(4):531-9. PubMed ID: 17973951
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selection pressure at altitude for genes related to alcohol metabolism: A role for endogenous enteric ethanol synthesis?
    Sturgess C; Montgomery H
    Exp Physiol; 2021 Nov; 106(11):2155-2167. PubMed ID: 34487385
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spleen Size and Function in Sherpa Living High, Sherpa Living Low and Nepalese Lowlanders.
    Holmström P; Mulder E; Starfelt V; Lodin-Sundström A; Schagatay E
    Front Physiol; 2020; 11():647. PubMed ID: 32695011
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cardiac response to hypobaric hypoxia: persistent changes in cardiac mass, function, and energy metabolism after a trek to Mt. Everest Base Camp.
    Holloway CJ; Montgomery HE; Murray AJ; Cochlin LE; Codreanu I; Hopwood N; Johnson AW; Rider OJ; Levett DZ; Tyler DJ; Francis JM; Neubauer S; Grocott MP; Clarke K;
    FASEB J; 2011 Feb; 25(2):792-6. PubMed ID: 20978235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aging, Tolerance to High Altitude, and Cardiorespiratory Response to Hypoxia.
    Richalet JP; Lhuissier FJ
    High Alt Med Biol; 2015 Jun; 16(2):117-24. PubMed ID: 25946570
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Factors associated with optic nerve sheath diameter during exposure to hypobaric hypoxia.
    Strapazzon G; Brugger H; Dal Cappello T; Procter E; Hofer G; Lochner P
    Neurology; 2014 May; 82(21):1914-8. PubMed ID: 24789866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth characteristics of populations of Tibetan origin in Nepal.
    Pawson IG
    Am J Phys Anthropol; 1977 Nov; 47(3):473-82. PubMed ID: 201173
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Manipulation of iron status on cerebral blood flow at high altitude in lowlanders and adapted highlanders.
    Patrician A; Willie C; Hoiland RL; Gasho C; Subedi P; Anholm JD; Tymko MM; Ainslie PN
    J Cereb Blood Flow Metab; 2023 Jul; 43(7):1166-1179. PubMed ID: 36883428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impaired glucose regulation in a Sherpa indigenous population living in the Everest region of Nepal and in Kathmandu Valley.
    Lhamo SY; Supamai S; Virasakdi C
    High Alt Med Biol; 2008; 9(3):217-22. PubMed ID: 18800958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Re-exposure to the hypobaric hypoxic brain injury of high altitude: plasma S100B levels and the possible effect of acclimatisation on blood-brain barrier dysfunction.
    Winter CD; Whyte T; Cardinal J; Kenny R; Ballard E
    Neurol Sci; 2016 Apr; 37(4):533-9. PubMed ID: 26924650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Operation Everest III (COMEX '97). Effects of prolonged and progressive hypoxia on humans during a simulated ascent to 8,848 M in a hypobaric chamber.
    Richalet JP; Robach P; Jarrot S; Schneider JC; Mason NP; Cauchy E; Herry JP; Bienvenu A; Gardette B; Gortan C
    Adv Exp Med Biol; 1999; 474():297-317. PubMed ID: 10635009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microcirculatory and Rheological Adaptive Mechanisms at High Altitude in European Lowlander Hikers and Nepalese Highlanders.
    Salvi P; Grillo A; Brunacci F; Severi F; Montaguti L; Gautier S; Salvi L; Pretolani E; Parati G; Benetos A
    J Clin Med; 2023 Apr; 12(8):. PubMed ID: 37109209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. mtDNA lineage expansions in Sherpa population suggest adaptive evolution in Tibetan highlands.
    Kang L; Zheng HX; Chen F; Yan S; Liu K; Qin Z; Liu L; Zhao Z; Li L; Wang X; He Y; Jin L
    Mol Biol Evol; 2013 Dec; 30(12):2579-87. PubMed ID: 24002810
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Angiogenic/lymphangiogenic factors and adaptation to extreme altitudes during an expedition to Mount Everest.
    Patitucci M; Lugrin D; Pagès G
    Acta Physiol (Oxf); 2009 Jun; 196(2):259-65. PubMed ID: 18983460
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The cerebral venous system and hypoxia.
    Wilson MH; Imray CH
    J Appl Physiol (1985); 2016 Jan; 120(2):244-50. PubMed ID: 26294747
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of leucine supplementation on fat free mass with prolonged hypoxic exposure during a 13-day trek to Everest Base Camp: a double-blind randomized study.
    Wing-Gaia SL; Gershenoff DC; Drummond MJ; Askew EW
    Appl Physiol Nutr Metab; 2014 Mar; 39(3):318-23. PubMed ID: 24552372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.