These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. A multi-layer sparse coding network learns contour coding from natural images. Hoyer PO; Hyvärinen A Vision Res; 2002 Jun; 42(12):1593-605. PubMed ID: 12074953 [TBL] [Abstract][Full Text] [Related]
26. Cortical Hyper-Excitability in Migraine in Response to Chromatic Patterns. Haigh SM; Chamanzar A; Grover P; Behrmann M Headache; 2019 Nov; 59(10):1773-1787. PubMed ID: 31454074 [TBL] [Abstract][Full Text] [Related]
27. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. Dan Y; Atick JJ; Reid RC J Neurosci; 1996 May; 16(10):3351-62. PubMed ID: 8627371 [TBL] [Abstract][Full Text] [Related]
28. Image segmentation using a sparse coding model of cortical area V1. Spratling MW IEEE Trans Image Process; 2013 Apr; 22(4):1631-43. PubMed ID: 23269754 [TBL] [Abstract][Full Text] [Related]
29. Visual discomfort and the spatial distribution of Fourier energy. Penacchio O; Wilkins AJ Vision Res; 2015 Mar; 108():1-7. PubMed ID: 25576380 [TBL] [Abstract][Full Text] [Related]
31. Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2. Hyvärinen A; Gutmann M; Hoyer PO BMC Neurosci; 2005 Feb; 6():12. PubMed ID: 15715907 [TBL] [Abstract][Full Text] [Related]
32. A mixture of sparse coding models explaining properties of face neurons related to holistic and parts-based processing. Hosoya H; Hyvärinen A PLoS Comput Biol; 2017 Jul; 13(7):e1005667. PubMed ID: 28742816 [TBL] [Abstract][Full Text] [Related]
33. Quadratic forms in natural images. Hashimoto W Network; 2003 Nov; 14(4):765-88. PubMed ID: 14653502 [TBL] [Abstract][Full Text] [Related]
34. A Comparison of Visual Response Properties in the Lateral Geniculate Nucleus and Primary Visual Cortex of Awake and Anesthetized Mice. Durand S; Iyer R; Mizuseki K; de Vries S; Mihalas S; Reid RC J Neurosci; 2016 Nov; 36(48):12144-12156. PubMed ID: 27903724 [TBL] [Abstract][Full Text] [Related]
35. [Frontal cerebral cortex and photic epilepsy of the baboon Papio papio (author transl)]. Ménini C J Physiol (Paris); 1976 Mar; 72(1):5-44. PubMed ID: 819647 [TBL] [Abstract][Full Text] [Related]
36. Is the early visual system optimised to be energy efficient? Vincent BT; Baddeley RJ; Troscianko T; Gilchrist ID Network; 2005; 16(2-3):175-90. PubMed ID: 16411495 [TBL] [Abstract][Full Text] [Related]
37. A neural model of binocular integration and rivalry based on the coordination of action-potential timing in primary visual cortex. Lumer ED Cereb Cortex; 1998 Sep; 8(6):553-61. PubMed ID: 9758218 [TBL] [Abstract][Full Text] [Related]
38. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Olshausen BA; Field DJ Nature; 1996 Jun; 381(6583):607-9. PubMed ID: 8637596 [TBL] [Abstract][Full Text] [Related]
39. Migraine, epileptic seizures and psychogenic non-epileptic seizures: observations in Indian patients in a clinic-based study. Chakravarty A; Mukherjee A; Roy D Neurol India; 2010; 58(4):631-3. PubMed ID: 20739810 [TBL] [Abstract][Full Text] [Related]