BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26064876)

  • 21. Muscle function and running activity in mouse models of hereditary muscle dystrophy: impact of double knockout for dystrophin and the transcription factor MyoD.
    Mangner N; Adams V; Sandri M; Hoellriegel R; Hambrecht R; Schuler G; Gielen S
    Muscle Nerve; 2012 Apr; 45(4):544-51. PubMed ID: 22431088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle degeneration similar to that observed in Duchenne muscular dystrophy.
    Araki E; Nakamura K; Nakao K; Kameya S; Kobayashi O; Nonaka I; Kobayashi T; Katsuki M
    Biochem Biophys Res Commun; 1997 Sep; 238(2):492-7. PubMed ID: 9299538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional characteristics of dystrophic skeletal muscle: insights from animal models.
    Watchko JF; O'Day TL; Hoffman EP
    J Appl Physiol (1985); 2002 Aug; 93(2):407-17. PubMed ID: 12133845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noninvasive monitoring of therapeutic gene transfer in animal models of muscular dystrophies.
    Bartoli M; Poupiot J; Goyenvalle A; Perez N; Garcia L; Danos O; Richard I
    Gene Ther; 2006 Jan; 13(1):20-8. PubMed ID: 16107863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. β-Sarcoglycan gene transfer decreases fibrosis and restores force in LGMD2E mice.
    Pozsgai ER; Griffin DA; Heller KN; Mendell JR; Rodino-Klapac LR
    Gene Ther; 2016 Jan; 23(1):57-66. PubMed ID: 26214262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Various effects of AAV9-mediated βARKct gene therapy on the heart in dystrophin-deficient (mdx) mice and δ-sarcoglycan-deficient (Sgcd-/-) mice.
    Bauer R; Enns H; Jungmann A; Leuchs B; Volz C; Schinkel S; Koch WJ; Raake PW; Most P; Katus HA; Müller OJ
    Neuromuscul Disord; 2019 Mar; 29(3):231-241. PubMed ID: 30782477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Animal models of muscular dystrophies.
    Nonaka I
    Lab Anim Sci; 1998 Feb; 48(1):8-17. PubMed ID: 9517883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of Duchenne muscular dystrophy.
    Bia BL; Cassidy PJ; Young ME; Rafael JA; Leighton B; Davies KE; Radda GK; Clarke K
    J Mol Cell Cardiol; 1999 Oct; 31(10):1857-62. PubMed ID: 10525423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smooth muscle-specific dystrophin expression improves aberrant vasoregulation in mdx mice.
    Ito K; Kimura S; Ozasa S; Matsukura M; Ikezawa M; Yoshioka K; Ueno H; Suzuki M; Araki K; Yamamura K; Miwa T; Dickson G; Thomas GD; Miike T
    Hum Mol Genet; 2006 Jul; 15(14):2266-75. PubMed ID: 16777842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors.
    Cai B; Spencer MJ; Nakamura G; Tseng-Ong L; Tidball JG
    Am J Pathol; 2000 May; 156(5):1789-96. PubMed ID: 10793090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell transplantation and gene therapy in muscular dystrophy.
    Morgan JE; Partridge TA
    Bioessays; 1992 Sep; 14(9):641-5. PubMed ID: 1365921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. rAAV6-microdystrophin rescues aberrant Golgi complex organization in mdx skeletal muscles.
    Percival JM; Gregorevic P; Odom GL; Banks GB; Chamberlain JS; Froehner SC
    Traffic; 2007 Oct; 8(10):1424-39. PubMed ID: 17714427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy.
    Danko I; Chapman V; Wolff JA
    Pediatr Res; 1992 Jul; 32(1):128-31. PubMed ID: 1635838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel and simple method for genotyping the mdx mouse using high-resolution melt polymerase chain reaction.
    Trebbin AL; Hoey AJ
    Muscle Nerve; 2009 May; 39(5):603-8. PubMed ID: 19347923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new model of experimental fibrosis in hindlimb skeletal muscle of adult mdx mouse mimicking muscular dystrophy.
    Desguerre I; Arnold L; Vignaud A; Cuvellier S; Yacoub-Youssef H; Gherardi RK; Chelly J; Chretien F; Mounier R; Ferry A; Chazaud B
    Muscle Nerve; 2012 Jun; 45(6):803-14. PubMed ID: 22581532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. What do mouse models of muscular dystrophy tell us about the DAPC and its components?
    Whitmore C; Morgan J
    Int J Exp Pathol; 2014 Dec; 95(6):365-77. PubMed ID: 25270874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle.
    Goonasekera SA; Lam CK; Millay DP; Sargent MA; Hajjar RJ; Kranias EG; Molkentin JD
    J Clin Invest; 2011 Mar; 121(3):1044-52. PubMed ID: 21285509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dystrophin superfamily: variability and complexity.
    Fabbrizio E; Pons F; Robert A; Hugon G; Bonet-Kerrache A; Mornet D
    J Muscle Res Cell Motil; 1994 Dec; 15(6):595-606. PubMed ID: 7706416
    [No Abstract]   [Full Text] [Related]  

  • 39. Characterization of aquaporin-4 in muscle and muscular dystrophy.
    Crosbie RH; Dovico SA; Flanagan JD; Chamberlain JS; Ownby CL; Campbell KP
    FASEB J; 2002 Jul; 16(9):943-9. PubMed ID: 12087055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dystrophin gene repair in mdx muscle precursor cells in vitro and in vivo mediated by RNA-DNA chimeric oligonucleotides.
    Bertoni C; Rando TA
    Hum Gene Ther; 2002 Apr; 13(6):707-18. PubMed ID: 11936970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.