BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26064958)

  • 1. Identification of Gene and MicroRNA Signatures for Oral Cancer Developed from Oral Leukoplakia.
    Zhu G; He Y; Yang S; Chen B; Zhou M; Xu XJ
    Biomed Res Int; 2015; 2015():841956. PubMed ID: 26064958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA expression profiling and functional annotation analysis of their targets associated with the malignant transformation of oral leukoplakia.
    Maimaiti A; Abudoukeremu K; Tie L; Pan Y; Li X
    Gene; 2015 Mar; 558(2):271-7. PubMed ID: 25576219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA and target gene expression based clustering of oral cancer, precancer and normal tissues.
    Roy R; Singh R; Chattopadhyay E; Ray A; Sarkar N; Aich R; Paul RR; Pal M; Roy B
    Gene; 2016 Nov; 593(1):58-63. PubMed ID: 27515006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Systematic Review of MicroRNA Signatures Associated with the Progression of Leukoplakia with and without Epithelial Dysplasia.
    Kaunein N; Ramani RS; Koo K; Moore C; Celentano A; McCullough M; Yap T
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CircHLA-C: A significantly upregulated circRNA co-existing in oral leukoplakia and oral lichen planus.
    Yang J; Song Y; Xu S; Ge S; Haiwen Z
    Organogenesis; 2023 Dec; 19(1):2234504. PubMed ID: 37531467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of p53 is an early event in the tumorigenesis of oral squamous cell carcinomas.
    Shintani S; Yoshihama Y; Emilio AR; Matsumura T
    Anticancer Res; 1995; 15(2):305-8. PubMed ID: 7762998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interleukin-37 expression and its potential role in oral leukoplakia and oral squamous cell carcinoma.
    Lin L; Wang J; Liu D; Liu S; Xu H; Ji N; Zhou M; Zeng X; Zhang D; Li J; Chen Q
    Sci Rep; 2016 May; 6():26757. PubMed ID: 27225603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upregulation of miR-31* is negatively associated with recurrent/newly formed oral leukoplakia.
    Xiao W; Bao ZX; Zhang CY; Zhang XY; Shi LJ; Zhou ZT; Jiang WW
    PLoS One; 2012; 7(6):e38648. PubMed ID: 22719913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive bioinformatics analysis combined with experimental validation to screen biomarkers for malignant transformation of oral leukoplakia.
    Li F; Qiu L; Gao Q; Yu L; Liu H; Xue Z; Tao A
    Genomics; 2023 Sep; 115(5):110686. PubMed ID: 37454941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of potential pathways in malignant transformation from oral leukoplakia to oral squamous cell carcinoma revealed by proteomic analysis.
    Wang Z; Feng X; Liu X; Jiang L; Zeng X; Ji N; Li J; Li L; Chen Q
    BMC Genomics; 2009 Aug; 10():383. PubMed ID: 19691830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of genes related to carcinogenesis of oral leukoplakia by oligo cancer microarray analysis.
    Liu W; Zheng W; Xie J; Zhang B; Ma W; Chen X
    Oncol Rep; 2011 Jul; 26(1):265-74. PubMed ID: 21523324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome array screening and verification of oral leukoplakia carcinogenesis-related hypoxia-responsive gene and microRNA.
    Shi LJ; Yang X; Wu SN; Liu W
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2021 Feb; 39(1):20-25. PubMed ID: 33723932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Expressions of PDCD5 and p53 in oral leukoplakia and oral squamous cell carcinoma].
    Zhao XY; Liu HW; Wei MJ
    Beijing Da Xue Xue Bao Yi Xue Ban; 2005 Aug; 37(4):429-32. PubMed ID: 16086069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copy Number Alterations Predict Development of OSCC from Oral Leukoplakia.
    Cai X; Zhang J; Li L; Liu L; Tang M; Zhou X; Peng C; Li X; Chen X; Xu M; Zhang H; Wang J; Huang Y; Li T
    J Dent Res; 2024 Feb; 103(2):138-146. PubMed ID: 38217281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparative analysis of methylation profiles in tissues of oral leukoplakia and oral squamous cell carcinoma].
    Fu J; Su Y; Liu Y; Zhang XY
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2018 Apr; 53(4):248-253. PubMed ID: 29690695
    [No Abstract]   [Full Text] [Related]  

  • 16. Micronome revealed miR-19a/b as key regulator of SOCS3 during cancer related inflammation of oral squamous cell carcinoma.
    Christopher AF; Gupta M; Bansal P
    Gene; 2016 Dec; 594(1):30-40. PubMed ID: 27581787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs and their role in the malignant transformation of oral leukoplakia: a scoping review.
    Niklander S; Guerra D; Contreras F; González-Arriagada W; Marín C
    Med Oral Patol Oral Cir Bucal; 2022 Jan; 27(1):e77-e84. PubMed ID: 34564679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of FAP in Oral Leukoplakia and Oral Squamous Cell Carcinoma.
    Li R; Zhang R; Shi X; Jiao X; Li Y; Zhao Y; Liu T; Zhang C
    Int Dent J; 2024 Jun; 74(3):581-588. PubMed ID: 38278714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exome sequencing of oral leukoplakia and oral squamous cell carcinoma implicates DNA damage repair gene defects in malignant transformation.
    Farah CS; Jessri M; Bennett NC; Dalley AJ; Shearston KD; Fox SA
    Oral Oncol; 2019 Sep; 96():42-50. PubMed ID: 31422212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inherited proliferative oral disorder: a reductionist approach to proliferative verrucous leukoplakia.
    Radhakrishnan R
    Indian J Dent Res; 2011; 22(3):365-6. PubMed ID: 22048571
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.