BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26065316)

  • 1. Magnetic Hyperthermia Ablation of Tumors Using Injectable Fe₃O₄/Calcium Phosphate Cement.
    Xu C; Zheng Y; Gao W; Xu J; Zuo G; Chen Y; Zhao M; Li J; Song J; Zhang N; Wang Z; Zhao H; Mei Z
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13866-75. PubMed ID: 26065316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable and thermally contractible hydroxypropyl methyl cellulose/Fe
    Wang F; Yang Y; Ling Y; Liu J; Cai X; Zhou X; Tang X; Liang B; Chen Y; Chen H; Chen D; Li C; Wang Z; Hu B; Zheng Y
    Biomaterials; 2017 Jun; 128():84-93. PubMed ID: 28301803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia.
    Bellizzi G; Bucci OM
    Int J Hyperthermia; 2010; 26(4):389-403. PubMed ID: 20210609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on hyperthermia via nanoparticle-mediated therapy.
    Sohail A; Ahmad Z; Bég OA; Arshad S; Sherin L
    Bull Cancer; 2017 May; 104(5):452-461. PubMed ID: 28385267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravenous magnetic nanoparticle cancer hyperthermia.
    Huang HS; Hainfeld JF
    Int J Nanomedicine; 2013; 8():2521-32. PubMed ID: 23901270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies.
    Ma M; Zhang Y; Gu N
    J Therm Biol; 2018 Aug; 76():89-94. PubMed ID: 30143303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?
    Carrião MS; Bakuzis AF
    Nanoscale; 2016 Apr; 8(15):8363-77. PubMed ID: 27046437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PMMA-Fe
    Yu K; Liang B; Zheng Y; Exner A; Kolios M; Xu T; Guo D; Cai X; Wang Z; Ran H; Chu L; Deng Z
    Theranostics; 2019; 9(14):4192-4207. PubMed ID: 31281541
    [No Abstract]   [Full Text] [Related]  

  • 12. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia.
    Tao C; Zhu Y
    Dalton Trans; 2014 Nov; 43(41):15482-90. PubMed ID: 25190592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy.
    Gogoi M; Jaiswal MK; Sarma HD; Bahadur D; Banerjee R
    Integr Biol (Camb); 2017 Jun; 9(6):555-565. PubMed ID: 28513646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.
    Shi D; Sadat ME; Dunn AW; Mast DB
    Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment.
    Jeon S; Park BC; Lim S; Yoon HY; Jeon YS; Kim BS; Kim YK; Kim K
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33483-33491. PubMed ID: 32614594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro assessment of poly(methylmethacrylate)-based bone cement containing magnetite nanoparticles for hyperthermia treatment of bone tumor.
    Li Z; Kawamura K; Kawashita M; Kudo TA; Kanetaka H; Hiraoka M
    J Biomed Mater Res A; 2012 Oct; 100(10):2537-45. PubMed ID: 22528664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation.
    Shen S; Kong F; Guo X; Wu L; Shen H; Xie M; Wang X; Jin Y; Ge Y
    Nanoscale; 2013 Sep; 5(17):8056-66. PubMed ID: 23873020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of Mn0.4Zn0.6Fe2O4 Magnetic Nanoparticles and Their Thermotherapy on VX2-Carcinoma-Induced Liver Tumors.
    Yuan CY; Tang QS; Zhang DS
    J Nanosci Nanotechnol; 2015 Jan; 15(1):74-84. PubMed ID: 26328307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Assessment of Nano-Technologies for Cancer Treatment: Cytotoxicity and Hyperthermia Laboratory Studies.
    Medina-Ramírez IE; Díaz de León Olmos MA; Muñoz Ortega MH; Zapien JA; Betancourt I; Santoyo-Elvira N
    Cancer Invest; 2020 Jan; 38(1):61-84. PubMed ID: 31791151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape Tailored Magnetic Nanorings for Intracellular Hyperthermia Cancer Therapy.
    Dias CSB; Hanchuk TDM; Wender H; Shigeyosi WT; Kobarg J; Rossi AL; Tanaka MN; Cardoso MB; Garcia F
    Sci Rep; 2017 Nov; 7(1):14843. PubMed ID: 29093500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.