These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 26065326)

  • 21. Contact angle hysteresis on superhydrophobic surfaces: an ionic liquid probe fluid offers mechanistic insight.
    Krumpfer JW; Bian P; Zheng P; Gao L; McCarthy TJ
    Langmuir; 2011 Mar; 27(6):2166-9. PubMed ID: 21271691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the Interaction Mechanism between Air Bubbles and Bitumen Surfaces in Aqueous Media Using Bubble Probe Atomic Force Microscopy.
    Xie L; Shi C; Cui X; Huang J; Wang J; Liu Q; Zeng H
    Langmuir; 2018 Jan; 34(3):729-738. PubMed ID: 29045156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AFM forces between mica and polystyrene surfaces in aqueous electrolyte solutions with and without gas bubbles.
    Saavedra JH; Acuña SM; Toledo PG
    J Colloid Interface Sci; 2013 Nov; 410():188-94. PubMed ID: 23998373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wetting of Surfaces Made of Hydrophobic Cavities.
    Lloyd BP; Bartlett PN; Wood RJ
    Langmuir; 2015 Sep; 31(34):9325-30. PubMed ID: 26267302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.
    Kim TH; Ha SH; Jang NS; Kim J; Kim JH; Park JK; Lee DW; Lee J; Kim SH; Kim JM
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5289-95. PubMed ID: 25688451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Filamentary superhydrophobic Teflon surfaces: Moderate apparent contact angle but superior air-retaining properties.
    Di Mundo R; Bottiglione F; Palumbo F; Notarnicola M; Carbone G
    J Colloid Interface Sci; 2016 Nov; 482():175-182. PubMed ID: 27501041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How to Achieve a Monostable Cassie State on a Micropillar-Arrayed Superhydrophobic Surface.
    Huang L; Yao Y; Peng Z; Zhang B; Chen S
    J Phys Chem B; 2021 Jan; 125(3):883-894. PubMed ID: 33459010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles.
    Yong J; Chen F; Fang Y; Huo J; Yang Q; Zhang J; Bian H; Hou X
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39863-39871. PubMed ID: 29067804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrokinetics on superhydrophobic surfaces.
    Papadopoulos P; Deng X; Vollmer D; Butt HJ
    J Phys Condens Matter; 2012 Nov; 24(46):464110. PubMed ID: 23113983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plastron-Mediated Growth of Captive Bubbles on Superhydrophobic Surfaces.
    Huynh SH; Zahidi AA; Muradoglu M; Cheong BH; Ng TW
    Langmuir; 2015 Jun; 31(24):6695-703. PubMed ID: 25986160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Following the wetting of one-dimensional photoactive surfaces.
    Macias-Montero M; Borras A; Alvarez R; Gonzalez-Elipe AR
    Langmuir; 2012 Oct; 28(42):15047-55. PubMed ID: 22998211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superhydrophobic Blood-Repellent Surfaces.
    Jokinen V; Kankuri E; Hoshian S; Franssila S; Ras RHA
    Adv Mater; 2018 Jun; 30(24):e1705104. PubMed ID: 29465772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction forces between a deformable air bubble and a spherical particle of tuneable hydrophobicity and surface charge in aqueous solutions.
    Englert AH; Ren S; Masliyah JH; Xu Z
    J Colloid Interface Sci; 2012 Aug; 379(1):121-9. PubMed ID: 22613626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles.
    Walczyk W; Schön PM; Schönherr H
    J Phys Condens Matter; 2013 May; 25(18):184005. PubMed ID: 23598774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of trapped air in the formation of cell-and-protein micropatterns on superhydrophobic/superhydrophilic microtemplated surfaces.
    Huang Q; Lin L; Yang Y; Hu R; Vogler EA; Lin C
    Biomaterials; 2012 Nov; 33(33):8213-20. PubMed ID: 22917736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Droplet detachment by air flow for microstructured superhydrophobic surfaces.
    Hao P; Lv C; Yao Z
    Langmuir; 2013 Apr; 29(17):5160-6. PubMed ID: 23557076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water drop friction on superhydrophobic surfaces.
    Olin P; Lindström SB; Pettersson T; Wågberg L
    Langmuir; 2013 Jul; 29(29):9079-89. PubMed ID: 23721176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The air entrapment under a drop impacting on a nano-rough surface.
    Langley KR; Li EQ; Vakarelski IU; Thoroddsen ST
    Soft Matter; 2018 Sep; 14(37):7586-7596. PubMed ID: 30069555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.