BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 26065334)

  • 1. Investigation of ligand selectivity in CYP3A7 by molecular dynamics simulations.
    Fan JR; Zheng QC; Cui YL; Li WK; Zhang HX
    J Biomol Struct Dyn; 2015; 33(11):2360-7. PubMed ID: 26065334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity.
    Bello M; Mendieta-Wejebe JE; Correa-Basurto J
    Biochem Pharmacol; 2014 Jul; 90(2):145-58. PubMed ID: 24794636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helices F-G are important for the substrate specificities of CYP3A7.
    Torimoto N; Ishii I; Toyama K; Hata M; Tanaka K; Shimomura H; Nakamura H; Ariyoshi N; Ohmori S; Kitada M
    Drug Metab Dispos; 2007 Mar; 35(3):484-92. PubMed ID: 17178770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Basis for the Diminished Ligand Binding and Catalytic Ability of Human Fetal-Specific CYP3A7.
    Sevrioukova IF
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Species-Selectivity of Human, Mouse and Rat Cytochrome P450 1A and 2B Subfamily Enzymes using Molecular Modeling, Docking and Dynamics Simulations.
    Karthikeyan BS; Suvaithenamudhan S; Akbarsha MA; Parthasarathy S
    Cell Biochem Biophys; 2018 Jun; 76(1-2):91-110. PubMed ID: 28353142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and pharmacophore insights into CYP3A enzymes.
    Ekins S; Stresser DM; Williams JA
    Trends Pharmacol Sci; 2003 Apr; 24(4):161-6. PubMed ID: 12707001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DR-predictor: incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism.
    Huang TW; Zaretzki J; Bergeron C; Bennett KP; Breneman CM
    J Chem Inf Model; 2013 Dec; 53(12):3352-66. PubMed ID: 24261543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of differences in nitroreduction of aristolochic acid I by cytochromes P450 1A1, 1A2 and 1B1.
    Jerabek P; Martinek V; Stiborova M
    Neuro Endocrinol Lett; 2012; 33 Suppl 3():25-32. PubMed ID: 23353840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and dynamic basis of human cytochrome P450 7B1: a survey of substrate selectivity and major active site access channels.
    Cui YL; Zhang JL; Zheng QC; Niu RJ; Xu Y; Zhang HX; Sun CC
    Chemistry; 2013 Jan; 19(2):549-57. PubMed ID: 23180418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational insights into the different catalytic activities of CYP2A13 and CYP2A6 on NNK.
    Xu Y; Shen Z; Shen J; Liu G; Li W; Tang Y
    J Mol Graph Model; 2011 Sep; 30():1-9. PubMed ID: 21680215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of hydrophobic parameters in identifying appropriate pose of CYP substrates in cytochromes.
    Ramesh M; Bharatam PV
    Eur J Med Chem; 2014 Jan; 71():15-23. PubMed ID: 24269512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of the binding of proton pump inhibitors to human P450 2C9 based on docking and molecular dynamics simulation.
    Shi R; Li J; Cao X; Zhu X; Lu X
    J Mol Model; 2011 Aug; 17(8):1941-51. PubMed ID: 21120554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production.
    Misra N; Patra MC; Panda PK; Sukla LB; Mishra BK
    J Biomol Struct Dyn; 2013 Mar; 31(3):241-57. PubMed ID: 22830394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Study of Binding Pockets in Human CYP1A2, CYP3A4, CYP3A5, and CYP3A7 with Aflatoxin B1, a Hepato-Carcinogen, by Molecular Dynamics Simulation & Principal Component Analysis.
    Saba N; Seal A
    Curr Drug Metab; 2022; 23(7):521-537. PubMed ID: 35850656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational insights into the different catalytic activities of CYP3A4 and CYP3A5 toward schisantherin E.
    Xue Y; Li J; Wu Z; Liu G; Tang Y; Li W
    Chem Biol Drug Des; 2019 May; 93(5):854-864. PubMed ID: 30637977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cytochrome P450 3A7 has a distinct high catalytic activity for the 16alpha-hydroxylation of estrone but not 17beta-estradiol.
    Lee AJ; Conney AH; Zhu BT
    Cancer Res; 2003 Oct; 63(19):6532-6. PubMed ID: 14559847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.
    Gadhe CG; Balupuri A; Cho SJ
    J Biomol Struct Dyn; 2015; 33(11):2491-510. PubMed ID: 25617117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CYP3A4 and CYP3A7-mediated carbamazepine 10,11-epoxidation are activated by differential endogenous steroids.
    Nakamura H; Torimoto N; Ishii I; Ariyoshi N; Nakasa H; Ohmori S; Kitada M
    Drug Metab Dispos; 2003 Apr; 31(4):432-8. PubMed ID: 12642469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors.
    Kiani YS; Ranaghan KE; Jabeen I; Mulholland AJ
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31510073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Investigation of Ligand Binding to the Peripheral Site in CYP3A4: Conformational Dynamics and Inhibitor Discovery.
    Du H; Li J; Cai Y; Zhang H; Liu G; Tang Y; Li W
    J Chem Inf Model; 2017 Mar; 57(3):616-626. PubMed ID: 28221037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.