These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 26065334)

  • 1. Investigation of ligand selectivity in CYP3A7 by molecular dynamics simulations.
    Fan JR; Zheng QC; Cui YL; Li WK; Zhang HX
    J Biomol Struct Dyn; 2015; 33(11):2360-7. PubMed ID: 26065334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity.
    Bello M; Mendieta-Wejebe JE; Correa-Basurto J
    Biochem Pharmacol; 2014 Jul; 90(2):145-58. PubMed ID: 24794636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helices F-G are important for the substrate specificities of CYP3A7.
    Torimoto N; Ishii I; Toyama K; Hata M; Tanaka K; Shimomura H; Nakamura H; Ariyoshi N; Ohmori S; Kitada M
    Drug Metab Dispos; 2007 Mar; 35(3):484-92. PubMed ID: 17178770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Basis for the Diminished Ligand Binding and Catalytic Ability of Human Fetal-Specific CYP3A7.
    Sevrioukova IF
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Species-Selectivity of Human, Mouse and Rat Cytochrome P450 1A and 2B Subfamily Enzymes using Molecular Modeling, Docking and Dynamics Simulations.
    Karthikeyan BS; Suvaithenamudhan S; Akbarsha MA; Parthasarathy S
    Cell Biochem Biophys; 2018 Jun; 76(1-2):91-110. PubMed ID: 28353142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and pharmacophore insights into CYP3A enzymes.
    Ekins S; Stresser DM; Williams JA
    Trends Pharmacol Sci; 2003 Apr; 24(4):161-6. PubMed ID: 12707001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DR-predictor: incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism.
    Huang TW; Zaretzki J; Bergeron C; Bennett KP; Breneman CM
    J Chem Inf Model; 2013 Dec; 53(12):3352-66. PubMed ID: 24261543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of differences in nitroreduction of aristolochic acid I by cytochromes P450 1A1, 1A2 and 1B1.
    Jerabek P; Martinek V; Stiborova M
    Neuro Endocrinol Lett; 2012; 33 Suppl 3():25-32. PubMed ID: 23353840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and dynamic basis of human cytochrome P450 7B1: a survey of substrate selectivity and major active site access channels.
    Cui YL; Zhang JL; Zheng QC; Niu RJ; Xu Y; Zhang HX; Sun CC
    Chemistry; 2013 Jan; 19(2):549-57. PubMed ID: 23180418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational insights into the different catalytic activities of CYP2A13 and CYP2A6 on NNK.
    Xu Y; Shen Z; Shen J; Liu G; Li W; Tang Y
    J Mol Graph Model; 2011 Sep; 30():1-9. PubMed ID: 21680215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of hydrophobic parameters in identifying appropriate pose of CYP substrates in cytochromes.
    Ramesh M; Bharatam PV
    Eur J Med Chem; 2014 Jan; 71():15-23. PubMed ID: 24269512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of the binding of proton pump inhibitors to human P450 2C9 based on docking and molecular dynamics simulation.
    Shi R; Li J; Cao X; Zhu X; Lu X
    J Mol Model; 2011 Aug; 17(8):1941-51. PubMed ID: 21120554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production.
    Misra N; Patra MC; Panda PK; Sukla LB; Mishra BK
    J Biomol Struct Dyn; 2013 Mar; 31(3):241-57. PubMed ID: 22830394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Study of Binding Pockets in Human CYP1A2, CYP3A4, CYP3A5, and CYP3A7 with Aflatoxin B1, a Hepato-Carcinogen, by Molecular Dynamics Simulation & Principal Component Analysis.
    Saba N; Seal A
    Curr Drug Metab; 2022; 23(7):521-537. PubMed ID: 35850656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational insights into the different catalytic activities of CYP3A4 and CYP3A5 toward schisantherin E.
    Xue Y; Li J; Wu Z; Liu G; Tang Y; Li W
    Chem Biol Drug Des; 2019 May; 93(5):854-864. PubMed ID: 30637977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cytochrome P450 3A7 has a distinct high catalytic activity for the 16alpha-hydroxylation of estrone but not 17beta-estradiol.
    Lee AJ; Conney AH; Zhu BT
    Cancer Res; 2003 Oct; 63(19):6532-6. PubMed ID: 14559847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.
    Gadhe CG; Balupuri A; Cho SJ
    J Biomol Struct Dyn; 2015; 33(11):2491-510. PubMed ID: 25617117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CYP3A4 and CYP3A7-mediated carbamazepine 10,11-epoxidation are activated by differential endogenous steroids.
    Nakamura H; Torimoto N; Ishii I; Ariyoshi N; Nakasa H; Ohmori S; Kitada M
    Drug Metab Dispos; 2003 Apr; 31(4):432-8. PubMed ID: 12642469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors.
    Kiani YS; Ranaghan KE; Jabeen I; Mulholland AJ
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31510073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Investigation of Ligand Binding to the Peripheral Site in CYP3A4: Conformational Dynamics and Inhibitor Discovery.
    Du H; Li J; Cai Y; Zhang H; Liu G; Tang Y; Li W
    J Chem Inf Model; 2017 Mar; 57(3):616-626. PubMed ID: 28221037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.