BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 26065371)

  • 1. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models.
    Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical implications of the erroneous treatment of exposure time in the Eulerian hemolysis power law model.
    Faghih MM; Craven BA; Sharp MK
    Artif Organs; 2023 Sep; 47(9):1531-1538. PubMed ID: 37032625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices.
    Craven BA; Aycock KI; Herbertson LH; Malinauskas RA
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1005-1030. PubMed ID: 30815758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients.
    Mantegazza A; Tobin N; Manning KB; Craven BA
    Biomech Model Mechanobiol; 2023 Apr; 22(2):433-451. PubMed ID: 36418603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On Eulerian versus Lagrangian models of mechanical blood damage and the linearized damage function.
    Faghih MM; Sharp MK
    Artif Organs; 2019 Jul; 43(7):681-687. PubMed ID: 30656703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Eulerian and Lagrangian models for hemolysis estimation.
    Taskin ME; Fraser KH; Zhang T; Wu C; Griffith BP; Wu ZJ
    ASAIO J; 2012; 58(4):363-72. PubMed ID: 22635012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Accuracy of Hemolysis Models in Couette-Type Blood Shearing Devices.
    Wu P; Boehning F; Groß-Hardt S; Hsu PL
    Artif Organs; 2018 Oct; 42(10):E290-E303. PubMed ID: 30375677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Discretization of the Power-Law Hemolysis Model.
    Faghih MM; Islam A; Sharp MK
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32793961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices.
    Zhang T; Taskin ME; Fang HB; Pampori A; Jarvik R; Griffith BP; Wu ZJ
    Artif Organs; 2011 Dec; 35(12):1180-6. PubMed ID: 21810113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-based blood damage estimation for computational design of ventricular assist devices.
    Gesenhues L; Pauli L; Behr M
    Int J Artif Organs; 2016 Jun; 39(4):166-70. PubMed ID: 27079416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-Field Simulations and Hemolysis Estimates for the Food and Drug Administration Critical Path Initiative Centrifugal Blood Pump.
    Heck ML; Yen A; Snyder TA; O'Rear EA; Papavassiliou DV
    Artif Organs; 2017 Oct; 41(10):E129-E140. PubMed ID: 28168706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N; Manning KB
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.
    Yu H; Engel S; Janiga G; Thévenin D
    Artif Organs; 2017 Jul; 41(7):603-621. PubMed ID: 28643335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFD Assisted Evaluation of In Vitro Experiments on Bearingless Blood Pumps.
    Puentener P; Schuck M; Kolar JW
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1370-1378. PubMed ID: 33048670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FDA Benchmark Medical Device Flow Models for CFD Validation.
    Malinauskas RA; Hariharan P; Day SW; Herbertson LH; Buesen M; Steinseifer U; Aycock KI; Good BC; Deutsch S; Manning KB; Craven BA
    ASAIO J; 2017; 63(2):150-160. PubMed ID: 28114192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An energy-dissipation-based power-law formulation for estimating hemolysis.
    Wu P; Groß-Hardt S; Boehning F; Hsu PL
    Biomech Model Mechanobiol; 2020 Apr; 19(2):591-602. PubMed ID: 31612342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.