These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 26065371)

  • 21. Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump.
    Ponnaluri SV; Hariharan P; Herbertson LH; Manning KB; Malinauskas RA; Craven BA
    Ann Biomed Eng; 2023 Jan; 51(1):253-269. PubMed ID: 36401112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental validation of the power law hemolysis model using a Couette shearing device.
    Froese V; Goubergrits L; Kertzscher U; Lommel M
    Artif Organs; 2024 May; 48(5):495-503. PubMed ID: 38146895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Testing of models of flow-induced hemolysis in blood flow through hypodermic needles.
    Chen Y; Kent TL; Sharp MK
    Artif Organs; 2013 Mar; 37(3):256-66. PubMed ID: 23419169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shear stress evaluation on blood cells using computational fluid dynamics.
    Mitoh A; Suebe Y; Kashima T; Koyabu E; Sobu E; Okamoto E; Mitamura Y; Nishimura I
    Biomed Mater Eng; 2020; 31(3):169-178. PubMed ID: 32597794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index.
    Fraser KH; Zhang T; Taskin ME; Griffith BP; Wu ZJ
    J Biomech Eng; 2012 Aug; 134(8):081002. PubMed ID: 22938355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of leakage flow in a shrouded centrifugal blood pump.
    Teo JB; Chan WK; Wong YW
    Artif Organs; 2010 Sep; 34(9):788-91. PubMed ID: 20883397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational simulation of a non-newtonian model of the blood separation process.
    De Gruttola S; Boomsma K; Poulikakos D
    Artif Organs; 2005 Dec; 29(12):949-59. PubMed ID: 16305650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations.
    Hariharan P; D'Souza GA; Horner M; Morrison TM; Malinauskas RA; Myers MR
    PLoS One; 2017; 12(6):e0178749. PubMed ID: 28594889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics.
    Apel J; Paul R; Klaus S; Siess T; Reul H
    Artif Organs; 2001 May; 25(5):341-7. PubMed ID: 11403662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support.
    Taskin ME; Fraser KH; Zhang T; Gellman B; Fleischli A; Dasse KA; Griffith BP; Wu ZJ
    Artif Organs; 2010 Dec; 34(12):1099-113. PubMed ID: 20626739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump.
    Arvand A; Hormes M; Reul H
    Artif Organs; 2005 Jul; 29(7):531-40. PubMed ID: 15982281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Research on flow characteristics in a non-blade centrifugal blood pump based on CFD technology].
    Cheng Y; Luo B; Wu W; Jiang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1133-7. PubMed ID: 21089685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical hemolysis in blood flow: user-independent predictions with the solution of a partial differential equation.
    Lacasse D; Garon A; Pelletier D
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):1-12. PubMed ID: 18651267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A verified and validated moving domain computational fluid dynamics solver with applications to cardiovascular flows.
    Kjeldsberg HA; Sundnes J; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2023 Jun; 39(6):e3703. PubMed ID: 37020156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A tensor-based measure for estimating blood damage.
    Arora D; Behr M; Pasquali M
    Artif Organs; 2004 Nov; 28(11):1002-15. PubMed ID: 15504116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Computational Fluid Dynamics Techniques to Blood Pumps.
    Sukuma R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 May; 20(5):529-533. PubMed ID: 28868695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI.
    Rispoli VC; Nielsen JF; Nayak KS; Carvalho JL
    Biomed Eng Online; 2015 Nov; 14():110. PubMed ID: 26611470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.