BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26065541)

  • 1. Computer simulation of biomolecule-biomaterial interactions at surfaces and interfaces.
    Wang Q; Wang MH; Wang KF; Liu Y; Zhang HP; Lu X; Zhang XD
    Biomed Mater; 2015 Jun; 10(3):032001. PubMed ID: 26065541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-scale interactions at the interface of biopolymer/hydroxyapatite.
    Zhang HP; Lu X; Fang LM; Qu SX; Feng B; Weng J
    Biomed Mater; 2008 Dec; 3(4):044110. PubMed ID: 19029609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio modeling of protein/biomaterial interactions: glycine adsorption at hydroxyapatite surfaces.
    Rimola A; Corno M; Zicovich-Wilson CM; Ugliengo P
    J Am Chem Soc; 2008 Dec; 130(48):16181-3. PubMed ID: 18989958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces.
    Costa D; Garrain PA; Baaden M
    J Biomed Mater Res A; 2013 Apr; 101(4):1210-22. PubMed ID: 23015529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An atomic charge model for graphene oxide for exploring its bioadhesive properties in explicit water.
    Stauffer D; Dragneva N; Floriano WB; Mawhinney RC; Fanchini G; French S; Rubel O
    J Chem Phys; 2014 Jul; 141(4):044705. PubMed ID: 25084935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio modeling of protein/biomaterial interactions: competitive adsorption between glycine and water onto hydroxyapatite surfaces.
    Rimola A; Corno M; Zicovich-Wilson CM; Ugliengo P
    Phys Chem Chem Phys; 2009 Oct; 11(40):9005-7. PubMed ID: 19812818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite as a key biomaterial: quantum-mechanical simulation of its surfaces in interaction with biomolecules.
    Corno M; Rimola A; Bolis V; Ugliengo P
    Phys Chem Chem Phys; 2010 Jun; 12(24):6309-29. PubMed ID: 20485772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auger electron spectroscopy and its use for the characterization of titanium and hydroxyapatite surfaces.
    Ong JL; Lucas LC
    Biomaterials; 1998 Mar; 19(4-5):455-64. PubMed ID: 9677157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of biologically relevant ions and organic molecules with titanium oxide (rutile) surfaces: A review on molecular dynamics studies.
    YazdanYar A; Aschauer U; Bowen P
    Colloids Surf B Biointerfaces; 2018 Jan; 161():563-577. PubMed ID: 29149762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Modelling of Peptide-Based Materials for Biomedical Applications.
    Walsh TR
    Adv Exp Med Biol; 2017; 1030():37-50. PubMed ID: 29081049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite (100) surface.
    Chen X; Wu T; Wang Q; Shen JW
    Biomaterials; 2008 May; 29(15):2423-32. PubMed ID: 18299149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of proteomic tools to study protein adsorption on a biomaterial, titanium grafted with poly(sodium styrene sulfonate).
    Oughlis S; Lessim S; Changotade S; Bollotte F; Poirier F; Helary G; Lataillade JJ; Migonney V; Lutomski D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Dec; 879(31):3681-7. PubMed ID: 22036657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of peptide-graphene interactions in explicit water.
    Camden AN; Barr SA; Berry RJ
    J Phys Chem B; 2013 Sep; 117(37):10691-7. PubMed ID: 23964693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio modelling of protein-biomaterial interactions: influence of amino acid polar side chains on adsorption at hydroxyapatite surfaces.
    Rimola A; Corno M; Garza J; Ugliengo P
    Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1478-98. PubMed ID: 22349252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca-P bioceramic coating.
    Paital SR; Dahotre NB
    Acta Biomater; 2009 Sep; 5(7):2763-72. PubMed ID: 19362524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone bonding at natural and biomaterial surfaces.
    Davies JE
    Biomaterials; 2007 Dec; 28(34):5058-67. PubMed ID: 17697711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study.
    Huang Y; He J; Gan L; Liu X; Wu Y; Wu F; Gu ZW
    Biomed Mater; 2014 Nov; 9(6):065007. PubMed ID: 25384201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The in vitro biological behavior of TiNb30 alloy treated with hydroxyapatite and tricalcium phosphates].
    Floquet I; Ralison A; Eisenbarth E; Iost A; Breme J; Hildebrand HF
    Rev Stomatol Chir Maxillofac; 1997 Nov; 98 Suppl 1():47-9. PubMed ID: 9471695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.