These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26065689)

  • 1. Amidation inhibitors 4-phenyl-3-butenoic acid and 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester are novel HDAC inhibitors with anti-tumorigenic properties.
    Ali A; Burns TJ; Lucrezi JD; May SW; Green GR; Matesic DF
    Invest New Drugs; 2015 Aug; 33(4):827-34. PubMed ID: 26065689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-inflammatory effects of 4-phenyl-3-butenoic acid and 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester, potential inhibitors of neuropeptide bioactivation.
    Bauer JD; Sunman JA; Foster MS; Thompson JR; Ogonowski AA; Cutler SJ; May SW; Pollock SH
    J Pharmacol Exp Ther; 2007 Mar; 320(3):1171-7. PubMed ID: 17138865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of JNK and p38 MAPK phosphorylation by 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester and 4-phenyl-butenoic acid decreases substance P-induced TNF-α upregulation in macrophages.
    Lucrezi JD; Burns TJ; Matesic DF; Oldham CD; May SW
    Int Immunopharmacol; 2014 Jul; 21(1):44-50. PubMed ID: 24746749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of the transformed phenotype and inhibition of peptidylglycine alpha-monooxygenase in Ras-transformed cells by 4-phenyl-3-butenoic acid.
    Sunman JA; Foster MS; Folse SL; May SW; Matesic DF
    Mol Carcinog; 2004 Dec; 41(4):231-46. PubMed ID: 15468302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative effects of 4-phenyl-3-butenoic acid and vorinostat on cell growth and signaling.
    Burns TJ; Ali A; Matesic DF
    Anticancer Res; 2015 Feb; 35(2):775-84. PubMed ID: 25667457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amide-based derivatives of β-alanine hydroxamic acid as histone deacetylase inhibitors: attenuation of potency through resonance effects.
    Liao V; Liu T; Codd R
    Bioorg Med Chem Lett; 2012 Oct; 22(19):6200-4. PubMed ID: 22932316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, Biological Evaluation, and Computer-Aided Drug Designing of New Derivatives of Hyperactive Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitors.
    Zhang S; Huang W; Li X; Yang Z; Feng B
    Chem Biol Drug Des; 2015 Oct; 86(4):795-804. PubMed ID: 25763653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors.
    Tashima T; Murata H; Kodama H
    Bioorg Med Chem; 2014 Jul; 22(14):3720-31. PubMed ID: 24864038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactam based 7-amino suberoylamide hydroxamic acids as potent HDAC inhibitors.
    Taddei M; Cini E; Giannotti L; Giannini G; Battistuzzi G; Vignola D; Vesci L; Cabri W
    Bioorg Med Chem Lett; 2014 Jan; 24(1):61-4. PubMed ID: 24345446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis and preliminary bioactivity studies of 1,3,4-thiadiazole hydroxamic acid derivatives as novel histone deacetylase inhibitors.
    Guan P; Sun F; Hou X; Wang F; Yi F; Xu W; Fang H
    Bioorg Med Chem; 2012 Jun; 20(12):3865-72. PubMed ID: 22579621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and preliminary evaluation of 2-aminobenzamide and hydroxamate derivatives containing 1,2,4-oxadiazole moiety as potent histone deacetylase inhibitors.
    Cai J; Wei H; Hong KH; Wu X; Cao M; Zong X; Li L; Sun C; Chen J; Ji M
    Eur J Med Chem; 2015; 96():1-13. PubMed ID: 25874326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells.
    Hsi LC; Xi X; Lotan R; Shureiqi I; Lippman SM
    Cancer Res; 2004 Dec; 64(23):8778-81. PubMed ID: 15574791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkyl-substituted polyaminohydroxamic acids: a novel class of targeted histone deacetylase inhibitors.
    Varghese S; Gupta D; Baran T; Jiemjit A; Gore SD; Casero RA; Woster PM
    J Med Chem; 2005 Oct; 48(20):6350-65. PubMed ID: 16190761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrids from Farnesylthiosalicylic Acid and Hydroxamic Acid as Dual Ras-Related Signaling and Histone Deacetylase (HDAC) Inhibitors: Design, Synthesis and Biological Evaluation.
    Ling Y; Wang X; Wang C; Xu C; Zhang W; Zhang Y; Zhang Y
    ChemMedChem; 2015 Jun; 10(6):971-6. PubMed ID: 25882299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo inhibition of peptidylglycine-alpha-hydroxylating monooxygenase by 4-phenyl-3-butenoic acid.
    Mueller GP; Driscoll WJ; Eipper BA
    J Pharmacol Exp Ther; 1999 Sep; 290(3):1331-6. PubMed ID: 10454511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells.
    Min A; Im SA; Kim DK; Song SH; Kim HJ; Lee KH; Kim TY; Han SW; Oh DY; Kim TY; O'Connor MJ; Bang YJ
    Breast Cancer Res; 2015 Mar; 17():33. PubMed ID: 25888415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scriptaid and suberoylanilide hydroxamic acid are histone deacetylase inhibitors with potent anti-Toxoplasma gondii activity in vitro.
    Strobl JS; Cassell M; Mitchell SM; Reilly CM; Lindsay DS
    J Parasitol; 2007 Jun; 93(3):694-700. PubMed ID: 17626366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis and biological evaluation of novel hydroxamates and 2-aminobenzamides as potent histone deacetylase inhibitors and antitumor agents.
    Xie R; Yao Y; Tang P; Chen G; Liu X; Yun F; Cheng C; Wu X; Yuan Q
    Eur J Med Chem; 2017 Jul; 134():1-12. PubMed ID: 28391133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquired vorinostat resistance shows partial cross-resistance to 'second-generation' HDAC inhibitors and correlates with loss of histone acetylation and apoptosis but not with altered HDAC and HAT activities.
    Dedes KJ; Dedes I; Imesch P; von Bueren AO; Fink D; Fedier A
    Anticancer Drugs; 2009 Jun; 20(5):321-33. PubMed ID: 19322073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of a new generation of substituted purine hydroxamate analogs as histone deacetylase inhibitors.
    Liu R; Wang J; Tang W; Fang H
    Bioorg Med Chem; 2016 Apr; 24(7):1446-54. PubMed ID: 26907204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.