These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 26065754)
1. Effect of sucrose concentration on the products of Kombucha fermentation on molasses. Malbaša R; Lončar E; Djurić M; Došenović I Food Chem; 2008 Jun; 108(3):926-32. PubMed ID: 26065754 [TBL] [Abstract][Full Text] [Related]
2. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. Wang X; Jin B J Biosci Bioeng; 2009 Feb; 107(2):138-44. PubMed ID: 19217551 [TBL] [Abstract][Full Text] [Related]
3. Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling. Lunelli BH; Andrade RR; Atala DI; Wolf Maciel MR; Maugeri Filho F; Maciel Filho R Appl Biochem Biotechnol; 2010 May; 161(1-8):227-37. PubMed ID: 19943122 [TBL] [Abstract][Full Text] [Related]
4. Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn steep liquor without additional nutrients. Wang Y; Li K; Huang F; Wang J; Zhao J; Zhao X; Garza E; Manow R; Grayburn S; Zhou S Bioresour Technol; 2013 Nov; 148():394-400. PubMed ID: 24063823 [TBL] [Abstract][Full Text] [Related]
5. Manufacture of a beverage from cheese whey using a "tea fungus" fermentation. Belloso-Morales G; Hernández-Sánchez H Rev Latinoam Microbiol; 2003; 45(1-2):5-11. PubMed ID: 17061515 [TBL] [Abstract][Full Text] [Related]
6. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Marsh AJ; O'Sullivan O; Hill C; Ross RP; Cotter PD Food Microbiol; 2014 Apr; 38():171-8. PubMed ID: 24290641 [TBL] [Abstract][Full Text] [Related]
7. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm ( Velićanski AS; Cvetković DD; Markov SL; Šaponjac VT; Vulić JJ Food Technol Biotechnol; 2014 Dec; 52(4):420-429. PubMed ID: 27904315 [TBL] [Abstract][Full Text] [Related]
8. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. He X; Guo X; Liu N; Zhang B Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097 [TBL] [Abstract][Full Text] [Related]
9. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Arshad M; Khan ZM; Khalil-ur-Rehman ; Shah FA; Rajoka MI Lett Appl Microbiol; 2008 Nov; 47(5):410-4. PubMed ID: 19146530 [TBL] [Abstract][Full Text] [Related]
10. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Wang L; Zhao B; Liu B; Yu B; Ma C; Su F; Hua D; Li Q; Ma Y; Xu P Bioresour Technol; 2010 Oct; 101(20):7908-15. PubMed ID: 20627714 [TBL] [Abstract][Full Text] [Related]
11. Acetic Acid Fermentation of Soybean Molasses and Characterisation of the Produced Vinegar. Miranda LCR; Gomes RJ; Mandarino JMG; Ida EI; Spinosa WA Food Technol Biotechnol; 2020 Mar; 58(1):84-90. PubMed ID: 32684792 [TBL] [Abstract][Full Text] [Related]
12. Kombucha fermentation and its antimicrobial activity. Sreeramulu G; Zhu Y; Knol W J Agric Food Chem; 2000 Jun; 48(6):2589-94. PubMed ID: 10888589 [TBL] [Abstract][Full Text] [Related]
13. Research on the effect of culture time on the kombucha tea beverage's antiradical capacity and sensory value. Gramza-Michałowska A; Kulczyński B; Xindi Y; Gumienna M Acta Sci Pol Technol Aliment; 2016; 15(4):447-457. PubMed ID: 28071022 [TBL] [Abstract][Full Text] [Related]
14. Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858. Atiyeh H; Duvnjak Z Biotechnol Prog; 2002; 18(2):234-9. PubMed ID: 11934290 [TBL] [Abstract][Full Text] [Related]
15. Metagenomic, organoleptic profiling, and nutritional properties of fermented kombucha tea substituted with recycled substrates. Selvaraj S; Gurumurthy K Front Microbiol; 2024; 15():1367697. PubMed ID: 38873151 [TBL] [Abstract][Full Text] [Related]
17. Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Flores-Albino B; Arias L; Gómez J; Castillo A; Gimeno M; Shirai K Bioprocess Biosyst Eng; 2012 Sep; 35(7):1193-200. PubMed ID: 22367529 [TBL] [Abstract][Full Text] [Related]
18. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z Bioresour Technol; 2009 Jul; 100(13):3403-9. PubMed ID: 19297150 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of Kombucha Obtained from Green, Oolong, and Black Teas on Inhibition of Pathogenic Bacteria, Antioxidation, and Toxicity on Colorectal Cancer Cell Line. Kaewkod T; Bovonsombut S; Tragoolpua Y Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31847423 [TBL] [Abstract][Full Text] [Related]
20. Sucrose Concentration and Fermentation Temperature Impact the Sensory Characteristics and Liking of Kombucha. Cohen G; Sela DA; Nolden AA Foods; 2023 Aug; 12(16):. PubMed ID: 37628115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]