These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26065873)

  • 1. Tubular Compressed Collagen Scaffolds for Ureteral Tissue Engineering in a Flow Bioreactor System.
    Vardar E; Engelhardt EM; Larsson HM; Mouloungui E; Pinnagoda K; Hubbell JA; Frey P
    Tissue Eng Part A; 2015 Sep; 21(17-18):2334-45. PubMed ID: 26065873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An airway smooth muscle cell niche under physiological pulsatile flow culture using a tubular dense collagen construct.
    Ghezzi CE; Risse PA; Marelli B; Muja N; Barralet JE; Martin JG; Nazhat SN
    Biomaterials; 2013 Mar; 34(8):1954-66. PubMed ID: 23257180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering.
    Donegan GC; Hunt JA; Rhodes N
    J Tissue Eng Regen Med; 2010 Feb; 4(2):83-95. PubMed ID: 19937643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds.
    Shi JG; Fu WJ; Wang XX; Xu YD; Li G; Hong BF; Wang Y; Du ZY; Zhang X
    J Biomed Mater Res A; 2012 Oct; 100(10):2612-22. PubMed ID: 22615210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressed collagen gel: a novel scaffold for human bladder cells.
    Engelhardt EM; Stegberg E; Brown RA; Hubbell JA; Wurm FM; Adam M; Frey P
    J Tissue Eng Regen Med; 2010 Feb; 4(2):123-30. PubMed ID: 19842107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation.
    Seifarth V; Grosse JO; Gossmann M; Janke HP; Arndt P; Koch S; Epple M; Artmann GM; Artmann AT
    J Biomater Appl; 2017 Sep; 32(3):321-330. PubMed ID: 28750602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.
    Jeong SI; Kwon JH; Lim JI; Cho SW; Jung Y; Sung WJ; Kim SH; Kim YH; Lee YM; Kim BS; Choi CY; Kim SJ
    Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential in two types of collagen scaffolds for urological tissue engineering applications - Are there differences in growth behaviour of juvenile and adult vesical cells?
    Leonhäuser D; Vogt M; Tolba RH; Grosse JO
    J Biomater Appl; 2016 Feb; 30(7):961-73. PubMed ID: 26475852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix.
    Liao W; Yang S; Song C; Li X; Li Y; Xiong Y
    Transplant Proc; 2013 Mar; 45(2):730-4. PubMed ID: 23498814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor.
    Alves da Silva ML; Martins A; Costa-Pinto AR; Correlo VM; Sol P; Bhattacharya M; Faria S; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2011 Oct; 5(9):722-32. PubMed ID: 21953870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM
    Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both sides nanopatterned tubular collagen scaffolds as tissue-engineered vascular grafts.
    Zorlutuna P; Vadgama P; Hasirci V
    J Tissue Eng Regen Med; 2010 Dec; 4(8):628-37. PubMed ID: 20603868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfusion bioreactor for small diameter tissue-engineered arteries.
    Williams C; Wick TM
    Tissue Eng; 2004; 10(5-6):930-41. PubMed ID: 15265311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.
    Eoh JH; Shen N; Burke JA; Hinderer S; Xia Z; Schenke-Layland K; Gerecht S
    Acta Biomater; 2017 Apr; 52():49-59. PubMed ID: 28163239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-expression of elastin and collagen leads to highly compliant engineered blood vessels.
    Gao J; Crapo P; Nerem R; Wang Y
    J Biomed Mater Res A; 2008 Jun; 85(4):1120-8. PubMed ID: 18412137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering.
    Nguyen TU; Shojaee M; Bashur CA; Kishore V
    Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels.
    Yazdani SK; Watts B; Machingal M; Jarajapu YP; Van Dyke ME; Christ GJ
    Tissue Eng Part A; 2009 Apr; 15(4):827-40. PubMed ID: 19290806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering.
    Suri S; Schmidt CE
    Tissue Eng Part A; 2010 May; 16(5):1703-16. PubMed ID: 20136524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.