These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 26065935)
1. Performance of PNOF6 for Hydrogen Abstraction Reactions. Lopez X; Piris M; Ruipérez F; Ugalde JM J Phys Chem A; 2015 Jul; 119(27):6981-8. PubMed ID: 26065935 [TBL] [Abstract][Full Text] [Related]
2. Performance of PNOF5 Natural Orbital Functional for Radical Formation Reactions: Hydrogen Atom Abstraction and C-C and O-O Homolytic Bond Cleavage in Selected Molecules. Lopez X; Ruipérez F; Piris M; Matxain JM; Matito E; Ugalde JM J Chem Theory Comput; 2012 Aug; 8(8):2646-52. PubMed ID: 26592109 [TBL] [Abstract][Full Text] [Related]
3. High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, furan, pyrrole, 1,3-cyclopentadiene, and borole, C4H4X/C4H4X+ (X = S, O, NH, CH2, and BH). Lo PK; Lau KC J Phys Chem A; 2011 Feb; 115(5):932-9. PubMed ID: 21210670 [TBL] [Abstract][Full Text] [Related]
4. Interacting pairs in natural orbital functional theory. Piris M J Chem Phys; 2014 Jul; 141(4):044107. PubMed ID: 25084881 [TBL] [Abstract][Full Text] [Related]
5. DFT-UX3LYP studies on the coordination chemistry of Ni2+. Part 1: Six coordinate [Ni(NH3)n(H2O)(6-n)]2+ complexes. Varadwaj PR; Cukrowski I; Marques HM J Phys Chem A; 2008 Oct; 112(42):10657-66. PubMed ID: 18823109 [TBL] [Abstract][Full Text] [Related]
6. Time-resolved study on the reactions of organic selenides with hydroxyl and oxide radicals, hydrated electrons, and H-atoms in aqueous solution, and DFT calculations of transients in comparison with sulfur analogues. Tobien T; Bonifacić M; Naumov S; Asmus KD Phys Chem Chem Phys; 2010 Jul; 12(25):6750-8. PubMed ID: 20431832 [TBL] [Abstract][Full Text] [Related]
7. Enthalpy of formation of the cyclohexadienyl radical and the C-H bond enthalpy of 1,4-cyclohexadiene: an experimental and computational re-evaluation. Gao Y; DeYonker NJ; Garrett EC; Wilson AK; Cundari TR; Marshall P J Phys Chem A; 2009 Jun; 113(25):6955-63. PubMed ID: 19489549 [TBL] [Abstract][Full Text] [Related]
8. Thermochemistry of radicals formed by hydrogen abstraction from 1-butanol, 2-methyl-1-propanol, and butanal. Papajak E; Seal P; Xu X; Truhlar DG J Chem Phys; 2012 Sep; 137(10):104314. PubMed ID: 22979866 [TBL] [Abstract][Full Text] [Related]
9. Should contemporary density functional theory methods be used to study the thermodynamics of radical reactions? Izgorodina EI; Brittain DR; Hodgson JL; Krenske EH; Lin CY; Namazian M; Coote ML J Phys Chem A; 2007 Oct; 111(42):10754-68. PubMed ID: 17887739 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen abstraction from n-butanol by the methyl radical: high level ab initio study of abstraction pathways and the importance of low energy rotational conformers. Katsikadakos D; Hardalupas Y; Taylor AM; Hunt PA Phys Chem Chem Phys; 2012 Jul; 14(27):9615-29. PubMed ID: 22692370 [TBL] [Abstract][Full Text] [Related]
11. Correlation of hydrogen-atom abstraction reaction efficiencies for aryl radicals with their vertical electron affinities and the vertical ionization energies of the hydrogen-atom donors. Jing L; Nash JJ; Kenttämaa HI J Am Chem Soc; 2008 Dec; 130(52):17697-709. PubMed ID: 19061320 [TBL] [Abstract][Full Text] [Related]
12. Shortcomings of basing radical stabilization energies on bond dissociation energies of alkyl groups to hydrogen. Zavitsas AA; Rogers DW; Matsunaga N J Org Chem; 2010 Aug; 75(16):5697-700. PubMed ID: 20704439 [TBL] [Abstract][Full Text] [Related]
13. Effects of microsolvation on the adenine-uracil base pair and its radical anion: adenine-uracil mono- and dihydrates. Kim S; Schaefer HF J Phys Chem A; 2007 Oct; 111(41):10381-9. PubMed ID: 17705454 [TBL] [Abstract][Full Text] [Related]
14. Allylic hydrogen abstraction II. H-abstraction from 1,4 type polyalkenes as a model for free radical trapping by polyunsaturated fatty acids (PUFAs). Szori M; Abou-Abdo T; Fittschen C; Csizmadia IG; Viskolcz B Phys Chem Chem Phys; 2007 Apr; 9(16):1931-40. PubMed ID: 17431521 [TBL] [Abstract][Full Text] [Related]
15. The natural orbital functional theory of the bonding in Cr2, Mo2 and W2. Ruipérez F; Piris M; Ugalde JM; Matxain JM Phys Chem Chem Phys; 2013 Feb; 15(6):2055-62. PubMed ID: 23262452 [TBL] [Abstract][Full Text] [Related]
16. Molecular electric moments calculated by using natural orbital functional theory. Mitxelena I; Piris M J Chem Phys; 2016 May; 144(20):204108. PubMed ID: 27250280 [TBL] [Abstract][Full Text] [Related]
17. Density functional theory study of hydrogen atom abstraction from a series of para-substituted phenols: why is the Hammett σ(p)+ constant able to represent radical reaction rates? Yoshida T; Hirozumi K; Harada M; Hitaoka S; Chuman H J Org Chem; 2011 Jun; 76(11):4564-70. PubMed ID: 21500806 [TBL] [Abstract][Full Text] [Related]
18. High-level ab initio studies of hydrogen abstraction from prototype hydrocarbon systems. Temelso B; Sherrill CD; Merkle RC; Freitas RA J Phys Chem A; 2006 Sep; 110(38):11160-73. PubMed ID: 16986851 [TBL] [Abstract][Full Text] [Related]
19. Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase. Viciano I; González-Navarrete P; Andrés J; Martí S J Chem Theory Comput; 2015 Apr; 11(4):1470-80. PubMed ID: 26574358 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics simulation of the low-temperature partial oxidation of CH4. Page AJ; Moghtaderi B J Phys Chem A; 2009 Feb; 113(8):1539-47. PubMed ID: 19166283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]