These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26066022)

  • 1. Mechanical differences of sickle cell trait (SCT) and normal red blood cells.
    Zheng Y; Cachia MA; Ge J; Xu Z; Wang C; Sun Y
    Lab Chip; 2015 Aug; 15(15):3138-46. PubMed ID: 26066022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous red blood cell adhesion and deformability in sickle cell disease.
    Alapan Y; Little JA; Gurkan UA
    Sci Rep; 2014 Nov; 4():7173. PubMed ID: 25417696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sickle cell trait human erythrocytes are significantly stiffer than normal.
    Maciaszek JL; Lykotrafitis G
    J Biomech; 2011 Feb; 44(4):657-61. PubMed ID: 21111421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic property of sickle cell anemia and sickle cell trait red blood cells.
    Muhammed E; Cooper J; Devito D; Mushi R; Del Pilar Aguinaga M; Erenso D; Crogman H
    J Biomed Opt; 2021 Sep; 26(9):. PubMed ID: 34590447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of inositol hexaphosphate-loaded red blood cells (RBCs) on the rheology of sickle RBCs.
    Lamarre Y; Bourgeaux V; Pichon A; Hardeman MR; Campion Y; Hardeman-Zijp M; Martin C; Richalet JP; Bernaudin F; Driss F; Godfrin Y; Connes P
    Transfusion; 2013 Mar; 53(3):627-36. PubMed ID: 22804873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stiffening of sickle cell trait red blood cells under simulated strenuous exercise conditions.
    Xu Z; Zheng Y; Wang X; Shehata N; Wang C; Xie S; Sun Y
    Microsyst Nanoeng; 2016; 2():16061. PubMed ID: 31057840
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Qiang Y; Liu J; Dao M; Du E
    Lab Chip; 2021 Sep; 21(18):3458-3470. PubMed ID: 34378625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does repeated and heavy exercise impair blood rheology in carriers of sickle cell trait?
    Tripette J; Hardy-Dessources MD; Sara F; Montout-Hedreville M; Saint-Martin C; Hue O; Connes P
    Clin J Sport Med; 2007 Nov; 17(6):465-70. PubMed ID: 17993789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-dependent flow of sickle trait blood as an in vitro therapeutic benchmark for sickle cell disease treatments.
    Lu X; Chaudhury A; Higgins JM; Wood DK
    Am J Hematol; 2018 Oct; 93(10):1227-1235. PubMed ID: 30033564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cells from donors with sickle cell trait: a safety issue for transfusion?
    Ould Amar AK
    Transfus Med; 2006 Aug; 16(4):248-53. PubMed ID: 16879152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.
    Lim HJ; Nam JH; Lee YJ; Shin S
    Rev Sci Instrum; 2009 Sep; 80(9):096101. PubMed ID: 19791972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a mouse model of sickle cell trait: parallels to human trait and a novel finding of cutaneous sensitization.
    Zappia KJ; Guo Y; Retherford D; Wandersee NJ; Stucky CL; Hillery CA
    Br J Haematol; 2017 Nov; 179(4):657-666. PubMed ID: 29027199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy.
    Alexy T; Pais E; Armstrong JK; Meiselman HJ; Johnson CS; Fisher TC
    Transfusion; 2006 Jun; 46(6):912-8. PubMed ID: 16734807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nocturnal autonomic nervous system activity impairment in sickle cell trait carriers.
    Connes P; Martin C; Barthelemy JC; Monchanin G; Atchou G; Forsuh A; Massarelli R; Wouassi D; Thiriet P; Pichot V
    Clin Physiol Funct Imaging; 2006 Mar; 26(2):87-91. PubMed ID: 16494598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood rheology and vascular function in sickle cell trait and sickle cell disease: From pathophysiological mechanisms to clinical usefulness.
    Connes P
    Clin Hemorheol Microcirc; 2024; 86(1-2):9-27. PubMed ID: 38073384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic deformation and recovery response of red blood cells to a cyclically reversing shear flow: Effects of frequency of cyclically reversing shear flow and shear stress level.
    Watanabe N; Kataoka H; Yasuda T; Takatani S
    Biophys J; 2006 Sep; 91(5):1984-98. PubMed ID: 16766612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does higher red blood cell (RBC) lactate transporter activity explain impaired RBC deformability in sickle cell trait?
    Connes P; Sara F; Hardy-Dessources MD; Etienne-Julan M; Hue O
    Jpn J Physiol; 2005 Dec; 55(6):385-7. PubMed ID: 16441976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic deformability of sickle red blood cells in microphysiological flow.
    Alapan Y; Matsuyama Y; Little JA; Gurkan UA
    Technology (Singap World Sci); 2016 Jun; 4(2):71-79. PubMed ID: 27437432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.