BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2606607)

  • 1. Sensorial substitution using sound-vibratory stimuli on the teeth: a new approach to the rehabilitation of the profoundly deaf.
    Galera-García C; Nombela-Gomez M
    Int J Neurosci; 1989 Nov; 49(1-2):61-70. PubMed ID: 2606607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users.
    Abbas PJ; Tejani VD; Scheperle RA; Brown CJ
    Ear Hear; 2017; 38(4):409-425. PubMed ID: 28085738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory brainstem response results as predictors of behavioral auditory thresholds in severe and profound hearing impairment.
    Brookhouser PE; Gorga MP; Kelly WJ
    Laryngoscope; 1990 Aug; 100(8):803-10. PubMed ID: 2381254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perception of audio-frequency vibrations by profoundly deaf subjects after fenestration of the vestibular system.
    Ribaric K; Bleeker JD; Wit HP
    Acta Otolaryngol; 1992; 112(1):45-9. PubMed ID: 1575036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency following response evoked by vibratory stimuli in profoundly deaf subjects.
    Ribarić K; Padovan I; Prevec TS
    Acta Otolaryngol; 1984; 97(5-6):467-71. PubMed ID: 6331705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.
    Thai-Van H; Cozma S; Boutitie F; Disant F; Truy E; Collet L
    Clin Neurophysiol; 2007 Mar; 118(3):676-89. PubMed ID: 17223382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-following response evoked by acoustic stimuli in normal and profoundly deaf subjects.
    Ribarić K; Prevec TS; Kozina V
    Audiology; 1984; 23(4):388-400. PubMed ID: 6331820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory brainstem potentials in man evoked by electrical stimulation of the round window.
    Chouard CH; Meyer B; Donadieu F
    Acta Otolaryngol; 1979; 87(3-4):287-93. PubMed ID: 443011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cortical responses evoked by vibrotactile sensations in deaf children].
    Quaranta A; Cipriani D; Mininni F
    Boll Soc Ital Biol Sper; 1980 May; 56(10):1057-63. PubMed ID: 7448007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the capability of the vestibular apparatus to perceive sound stimuli.
    Ribarić K; Kekić B; Dergenc R
    Acta Otolaryngol; 1992; 112(2):221-4. PubMed ID: 1604983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evoked potential study of the developmental time course of the auditory nerve and brainstem in children using cochlear implants.
    Gordon KA; Papsin BC; Harrison RV
    Audiol Neurootol; 2006; 11(1):7-23. PubMed ID: 16219994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral electrical stimulation of a congenitally-deaf ear and of an acquired-deaf ear.
    Pelizzone M; Kasper A; Hari R; Karhu J; Montandon P
    Acta Otolaryngol; 1991; 111(2):263-8. PubMed ID: 2068912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically evoked brainstem responses in cochlear implant recipients.
    Miyamoto RT; Brown DD
    Otolaryngol Head Neck Surg; 1987 Jan; 96(1):34-8. PubMed ID: 3118294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central auditory development after long-term cochlear implant use.
    Jiwani S; Papsin BC; Gordon KA
    Clin Neurophysiol; 2013 Sep; 124(9):1868-80. PubMed ID: 23680008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of tonotopic maps in humans: influence of hearing loss, hearing aids and cochlear implants.
    Thai-Van H; Veuillet E; Norena A; Guiraud J; Collet L
    Acta Otolaryngol; 2010 Mar; 130(3):333-7. PubMed ID: 19845491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Auditory brainstem responses evoked by direct mechanical stimulation of the ossicular chain. Objective preoperative testing of candidates for implantable hearing aids].
    Hoth S; Lohaus M; Waldmann B
    HNO; 2003 Jul; 51(7):550-7. PubMed ID: 12904876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the effect of cross-hearing and clinical masking on the auditory brain-stem evoked response.
    Smyth V
    Electroencephalogr Clin Neurophysiol; 1985 Jul; 61(1):26-9. PubMed ID: 2408860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.