BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26066089)

  • 1. Influence of Mesh Density on Airflow and Particle Deposition in Sinonasal Airway Modeling.
    Frank-Ito DO; Wofford M; Schroeter JD; Kimbell JS
    J Aerosol Med Pulm Drug Deliv; 2016 Feb; 29(1):46-56. PubMed ID: 26066089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Computational Study of Nasal Spray Deposition Pattern in Four Ethnic Groups.
    Keeler JA; Patki A; Woodard CR; Frank-Ito DO
    J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):153-66. PubMed ID: 26270330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.
    Longest PW; Vinchurkar S
    Med Eng Phys; 2007 Apr; 29(3):350-66. PubMed ID: 16814588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On computational fluid dynamics models for sinonasal drug transport: Relevance of nozzle subtraction and nasal vestibular dilation.
    Basu S; Frank-Ito DO; Kimbell JS
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2946. PubMed ID: 29172251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients.
    Farzal Z; Basu S; Burke A; Fasanmade OO; Lopez EM; Bennett WD; Ebert CS; Zanation AM; Senior BA; Kimbell JS
    Int Forum Allergy Rhinol; 2019 Jul; 9(7):746-758. PubMed ID: 30821929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
    Bass K; Boc S; Hindle M; Dodson K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2019 Jun; 32(3):132-148. PubMed ID: 30556777
    [No Abstract]   [Full Text] [Related]  

  • 7. Particle deposition in the paranasal sinuses following endoscopic sinus surgery.
    Siu J; Shrestha K; Inthavong K; Shang Y; Douglas R
    Comput Biol Med; 2020 Jan; 116():103573. PubMed ID: 31999554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of endoscopic craniofacial resection on simulated nasal airflow and heat transport.
    Tracy LF; Basu S; Shah PV; Frank-Ito DO; Das S; Zanation AM; Kimbell JS
    Int Forum Allergy Rhinol; 2019 Aug; 9(8):900-909. PubMed ID: 30861326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid mesh for nasal airflow studies.
    Zubair M; Abdullah MZ; Ahmad KA
    Comput Math Methods Med; 2013; 2013():727362. PubMed ID: 23983811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative investigation of transport and deposition of nebulized particles in nasal airways following various middle turbinectomy.
    Ma R; Tian L; Wang Y; Sun S; Zhang J; Lou M; Hu Z; Gong M; Yang F; Zheng G; Dong J; Zhang Y
    Rhinology; 2024 Apr; 62(2):223-235. PubMed ID: 38010118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the Polyhedral Mesh Style for Predicting Aerosol Deposition in Representative Models of the Conducting Airways.
    Thomas ML; Longest PW
    J Aerosol Sci; 2022 Jan; 159():. PubMed ID: 34658403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug delivery in the nasal cavity after functional endoscopic sinus surgery: a computational fluid dynamics study.
    Chen XB; Lee HP; Chong VF; Wang DY
    J Laryngol Otol; 2012 May; 126(5):487-94. PubMed ID: 22414292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing airflow profile in the postoperative maxillary sinus by using computational fluid dynamics modeling: A pilot study.
    Choi KJ; Jang DW; Ellison MD; Frank-Ito DO
    Am J Rhinol Allergy; 2016; 30(1):29-36. PubMed ID: 26867527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery.
    Bahmanzadeh H; Abouali O; Faramarzi M; Ahmadi G
    Comput Biol Med; 2015 Jun; 61():8-18. PubMed ID: 25862997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
    Craven BA; Aycock KI; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation analysis of airflow alteration in the trachea following the vascular ring surgery based on CT images using the computational fluid dynamics method.
    Chen FL; Horng TL; Shih TC
    J Xray Sci Technol; 2014; 22(2):213-25. PubMed ID: 24699348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways.
    Farghadan A; Poorbahrami K; Jalal S; Oakes JM; Coletti F; Arzani A
    Comput Biol Med; 2020 May; 120():103703. PubMed ID: 32217283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow.
    Craven BA; Paterson EG; Settles GS; Lawson MJ
    J Biomech Eng; 2009 Sep; 131(9):091002. PubMed ID: 19725691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of two consecutive nasal respiratory cycles: toward a better understanding of nasal physiology.
    de Gabory L; Reville N; Baux Y; Boisson N; Bordenave L
    Int Forum Allergy Rhinol; 2018 Jun; 8(6):676-685. PubMed ID: 29337433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.