These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26066099)

  • 1. Four-level refrigerator driven by photons.
    Wang J; Lai Y; Ye Z; He J; Ma Y; Liao Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):050102. PubMed ID: 26066099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum absorption refrigerator.
    Levy A; Kosloff R
    Phys Rev Lett; 2012 Feb; 108(7):070604. PubMed ID: 22401189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coefficient of performance under maximum χ criterion in a two-level atomic system as a refrigerator.
    Yuan Y; Wang R; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052151. PubMed ID: 25493783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R; Levy A
    Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum refrigerators and the third law of thermodynamics.
    Levy A; Alicki R; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency estimation for an equilibrium version of the Maxwell refrigerator.
    Joseph T; V K
    Phys Rev E; 2021 Feb; 103(2-1):022131. PubMed ID: 33735980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance characteristics and optimal analysis of a nanosized quantum dot photoelectric refrigerator.
    Li C; Zhang Y; Wang J; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062120. PubMed ID: 24483399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal performance of a three-level quantum refrigerator.
    Singh V; Pandit T; Johal RS
    Phys Rev E; 2020 Jun; 101(6-1):062121. PubMed ID: 32688608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum analysis of a Brownian refrigerator.
    Luo XG; Liu N; He JZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022139. PubMed ID: 23496491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of quantum Otto refrigerators with squeezing.
    Long R; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062137. PubMed ID: 26172691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum refrigeration cycles using spin-1/2 systems as the working substance.
    He J; Chen J; Hua B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036145. PubMed ID: 11909203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-oscillating polymeric refrigerator with high energy efficiency.
    Han D; Zhang Y; Huang C; Zheng S; Wu D; Li Q; Du F; Duan H; Chen W; Shi J; Chen J; Liu G; Chen X; Qian X
    Nature; 2024 May; 629(8014):1041-1046. PubMed ID: 38720078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherence and decoherence in quantum absorption refrigerators.
    Kilgour M; Segal D
    Phys Rev E; 2018 Jul; 98(1-1):012117. PubMed ID: 30110858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Realization of a Quantum Refrigerator Driven by Indefinite Causal Orders.
    Nie X; Zhu X; Huang K; Tang K; Long X; Lin Z; Tian Y; Qiu C; Xi C; Yang X; Li J; Dong Y; Xin T; Lu D
    Phys Rev Lett; 2022 Sep; 129(10):100603. PubMed ID: 36112431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system.
    Açıkkalp E; Kandemir SY; Ahmadi MH
    J Environ Manage; 2019 Feb; 232():455-461. PubMed ID: 30502614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.
    Wu F; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.