These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Probability distributions and associated nonlinear Fokker-Planck equation for the two-index entropic form S(q,δ). Ribeiro MS; Nobre FD; Tsallis C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052135. PubMed ID: 25353767 [TBL] [Abstract][Full Text] [Related]
3. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231 [TBL] [Abstract][Full Text] [Related]
4. Time evolution of interacting vortices under overdamped motion. Ribeiro MS; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021146. PubMed ID: 22463191 [TBL] [Abstract][Full Text] [Related]
5. Second law and entropy production in a nonextensive system. Ribeiro MS; Casas GA; Nobre FD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012140. PubMed ID: 25679603 [TBL] [Abstract][Full Text] [Related]
6. Consequences of the H theorem from nonlinear Fokker-Planck equations. Schwämmle V; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952 [TBL] [Abstract][Full Text] [Related]
7. Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions. Bologna M; Tsallis C; Grigolini P Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2213-8. PubMed ID: 11088687 [TBL] [Abstract][Full Text] [Related]
8. Curl forces and the nonlinear Fokker-Planck equation. Wedemann RS; Plastino AR; Tsallis C Phys Rev E; 2016 Dec; 94(6-1):062105. PubMed ID: 28085349 [TBL] [Abstract][Full Text] [Related]
9. Nonequilibrium distributions from the Fokker-Planck equation: Kappa distributions and Tsallis entropy. Oylukan AD; Shizgal B Phys Rev E; 2023 Jul; 108(1-1):014111. PubMed ID: 37583209 [TBL] [Abstract][Full Text] [Related]
10. Entropy production and nonlinear Fokker-Planck equations. Casas GA; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061136. PubMed ID: 23367922 [TBL] [Abstract][Full Text] [Related]
11. Effective-temperature concept: a physical application for nonextensive statistical mechanics. Nobre FD; Souza AM; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061113. PubMed ID: 23367899 [TBL] [Abstract][Full Text] [Related]
12. Entropic nonadditivity, H theorem, and nonlinear Klein-Kramers equations. Dos Santos MAF; Lenzi EK Phys Rev E; 2017 Nov; 96(5-1):052109. PubMed ID: 29347710 [TBL] [Abstract][Full Text] [Related]
13. Dynamical model and nonextensive statistical mechanics of a market index on large time windows. Ausloos M; Ivanova K Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046122. PubMed ID: 14683017 [TBL] [Abstract][Full Text] [Related]
14. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy. Shizgal BD Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear Ehrenfest's urn model. Casas GA; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042139. PubMed ID: 25974470 [TBL] [Abstract][Full Text] [Related]
16. Nonextensive thermostatistics and the H theorem. Lima JA; Silva R; Plastino AR Phys Rev Lett; 2001 Apr; 86(14):2938-41. PubMed ID: 11290077 [TBL] [Abstract][Full Text] [Related]
17. Stationary and dynamical properties of information entropies in nonextensive systems. Hasegawa H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031133. PubMed ID: 18517355 [TBL] [Abstract][Full Text] [Related]
18. Tsallis distributions and 1/f noise from nonlinear stochastic differential equations. Ruseckas J; Kaulakys B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051125. PubMed ID: 22181387 [TBL] [Abstract][Full Text] [Related]
19. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
20. Temporal extensivity of Tsallis' entropy and the bound on entropy production rate. Abe S; Nakada Y Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021120. PubMed ID: 17025406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]