These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
866 related articles for article (PubMed ID: 26066135)
1. Nematic phase in the J(1)-J(2) square-lattice Ising model in an external field. Guerrero AI; Stariolo DA; Almarza NG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052123. PubMed ID: 26066135 [TBL] [Abstract][Full Text] [Related]
2. Asymptotic behavior of the isotropic-nematic and nematic-columnar phase boundaries for the system of hard rectangles on a square lattice. Kundu J; Rajesh R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012105. PubMed ID: 25679568 [TBL] [Abstract][Full Text] [Related]
3. Evidence of Kosterlitz-Thouless phase transitions in the Ising model with dipolar interactions. Bab MA; Saracco GP Phys Rev E; 2019 Aug; 100(2-1):022143. PubMed ID: 31574726 [TBL] [Abstract][Full Text] [Related]
4. Wall-induced orientational order in athermal semidilute solutions of semiflexible polymers: Monte Carlo simulations of a lattice model. Ivanov VA; Rodionova AS; Martemyanova JA; Stukan MR; Müller M; Paul W; Binder K J Chem Phys; 2013 Jun; 138(23):234903. PubMed ID: 23802981 [TBL] [Abstract][Full Text] [Related]
5. Frustrated spin-1/2 Ising antiferromagnet on a square lattice in a transverse field. Bobák A; Jurčišinová E; Jurčišin M; Žukovič M Phys Rev E; 2018 Feb; 97(2-1):022124. PubMed ID: 29548082 [TBL] [Abstract][Full Text] [Related]
6. Cluster-variation approximation for a network-forming lattice-fluid model. Buzano C; De Stefanis E; Pretti M J Chem Phys; 2008 Jul; 129(2):024506. PubMed ID: 18624537 [TBL] [Abstract][Full Text] [Related]
7. Ashkin-teller criticality and pseudo-first-order behavior in a frustrated Ising model on the square lattice. Jin S; Sen A; Sandvik AW Phys Rev Lett; 2012 Jan; 108(4):045702. PubMed ID: 22400864 [TBL] [Abstract][Full Text] [Related]
8. Crystal field effect on a bilayer Bethe lattice. Canko O; Albayrak E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011116. PubMed ID: 17358119 [TBL] [Abstract][Full Text] [Related]
9. Phase transitions in a three-dimensional kinetic spin-1/2 Ising model with random field: effective-field-theory study. Costabile E; de Sousa JR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011121. PubMed ID: 22400526 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet. Grousson M; Tarjus G; Viot P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036109. PubMed ID: 11580396 [TBL] [Abstract][Full Text] [Related]
11. Role of further-neighbor interactions in modulating the critical behavior of the Ising model with frustration. Liu RM; Zhuo WZ; Dong S; Lu XB; Gao XS; Qin MH; Liu JM Phys Rev E; 2016 Mar; 93(3):032114. PubMed ID: 27078299 [TBL] [Abstract][Full Text] [Related]
12. Effects of a perpendicular magnetic field in the dipolar Heisenberg model with dominant exchange interaction. Abu-Labdeh AM; MacIsaac AB; De'Bell K J Phys Condens Matter; 2011 Jul; 23(29):296005. PubMed ID: 21737865 [TBL] [Abstract][Full Text] [Related]
13. Phase diagram and critical behavior of the square-lattice Ising model with competing nearest-neighbor and next-nearest-neighbor interactions. Yin J; Landau DP Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051117. PubMed ID: 20364957 [TBL] [Abstract][Full Text] [Related]
14. Frustration-induced complexity in order-disorder transitions of the J_{1}-J_{2}-J_{3} Ising model on the square lattice. Subert R; Mulder BM Phys Rev E; 2022 Jul; 106(1-1):014105. PubMed ID: 35974564 [TBL] [Abstract][Full Text] [Related]
15. Critical behavior of the mixed-spin Ising model with two competing dynamics. Godoy M; Figueiredo W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026111. PubMed ID: 11863591 [TBL] [Abstract][Full Text] [Related]
16. Phase transitions and self-organization of Janus disks in two dimensions studied by Monte Carlo simulations. Borówko M; Rżysko W Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062308. PubMed ID: 25615094 [TBL] [Abstract][Full Text] [Related]
17. Phase transitions, order by disorder, and finite entropy in the Ising antiferromagnetic bilayer honeycomb lattice. Gómez Albarracín FA; Rosales HD; Serra P Phys Rev E; 2018 Jul; 98(1-1):012139. PubMed ID: 30110814 [TBL] [Abstract][Full Text] [Related]
18. Nonequilibrium antiferromagnetic mixed-spin Ising model. Godoy M; Figueiredo W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036131. PubMed ID: 12366208 [TBL] [Abstract][Full Text] [Related]
19. Multicritical Nishimori point in the phase diagram of the +/-J Ising model on a square lattice. Hasenbusch M; Toldin FP; Pelissetto A; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051115. PubMed ID: 18643034 [TBL] [Abstract][Full Text] [Related]
20. Phase transitions in a system of hard rectangles on the square lattice. Kundu J; Rajesh R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052124. PubMed ID: 25353756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]