These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26066142)

  • 21. Continuous time random walk in homogeneous porous media.
    Jiang J; Wu J
    J Contam Hydrol; 2013 Dec; 155():82-6. PubMed ID: 24212049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural Organic Matter Transport Modeling with a Continuous Time Random Walk Approach.
    McInnis DP; Bolster D; Maurice PA
    Environ Eng Sci; 2014 Feb; 31(2):98-106. PubMed ID: 24596449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite-Element Method Solution of Non-Fickian Transport in Porous Media: The CTRW-FEM Package.
    Ben-Zvi R; Jiang S; Scher H; Berkowitz B
    Ground Water; 2019 May; 57(3):479-484. PubMed ID: 30044902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and modeling investigation of multicomponent reactive transport in porous media.
    Katz GE; Berkowitz B; Guadagnini A; Saaltink MW
    J Contam Hydrol; 2011 Mar; 120-121():27-44. PubMed ID: 20015574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered transport of lindane caused by the retention of natural particles in saturated porous media.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous-time random-walk approach to normal and anomalous reaction-diffusion processes.
    Zoia A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041115. PubMed ID: 18517586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fractal continuum model for tracer transport in a porous medium.
    Herrera-Hernández EC; Coronado M; Hernández-Coronado H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063004. PubMed ID: 24483554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrodifferential formulations of the continuous-time random walk for solute transport subject to bimolecular A+B→0 reactions: From micro- to mesoscopic.
    Hansen SK; Berkowitz B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032113. PubMed ID: 25871060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns.
    Szenknect S; Ardois C; Dewière L; Gaudet JP
    J Contam Hydrol; 2008 Aug; 100(1-2):47-57. PubMed ID: 18586351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental investigation of transverse mixing in porous media under helical flow conditions.
    Ye Y; Chiogna G; Cirpka OA; Grathwohl P; Rolle M
    Phys Rev E; 2016 Jul; 94(1-1):013113. PubMed ID: 27575223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictive modelling of dispersion controlled reactive plumes at the laboratory-scale.
    Ham PA; Prommer H; Olsson AH; Schotting RJ; Grathwohl P
    J Contam Hydrol; 2007 Aug; 93(1-4):304-15. PubMed ID: 17559967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies.
    Deng H; Dai Z; Wolfsberg AV; Ye M; Stauffer PH; Lu Z; Kwicklis E
    Chemosphere; 2013 Apr; 91(3):248-57. PubMed ID: 23260249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of microsporidium Encephalitozoon intestinales spores in sandy porous media.
    Brusseau ML; Oleen JK; Santamaria J; Cheng L; Orosz-Coghlan P; Chetochine AS; Blanford WJ; Rykwalder P; Gerba CP
    Water Res; 2005 Sep; 39(15):3636-42. PubMed ID: 16048729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.
    Yabusaki SB; Fang Y; Williams KH; Murray CJ; Ward AL; Dayvault RD; Waichler SR; Newcomer DR; Spane FA; Long PE
    J Contam Hydrol; 2011 Nov; 126(3-4):271-90. PubMed ID: 22115092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: fluorescent dye imaging and modelling at the laboratory-scale.
    Barns GL; Thornton SF; Wilson RD
    J Contam Hydrol; 2015 Jan; 172():84-99. PubMed ID: 25478669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the interplay between electromigration and electroosmosis during electrokinetic transport in heterogeneous porous media.
    Sprocati R; Rolle M
    Water Res; 2022 Apr; 213():118161. PubMed ID: 35152137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media.
    Berkowitz B; Kosakowski G; Margolin G; Scher H
    Ground Water; 2001; 39(4):593-603. PubMed ID: 11447859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.
    Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK
    J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Guar gum solutions for improved delivery of iron particles in porous media (part 2): iron transport tests and modeling in radial geometry.
    Tosco T; Gastone F; Sethi R
    J Contam Hydrol; 2014 Oct; 166():34-51. PubMed ID: 25063698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solvable continuous-time random walk model of the motion of tracer particles through porous media.
    Fouxon I; Holzner M
    Phys Rev E; 2016 Aug; 94(2-1):022132. PubMed ID: 27627271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.