These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 26066148)
1. Inference of the sparse kinetic Ising model using the decimation method. Decelle A; Zhang P Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052136. PubMed ID: 26066148 [TBL] [Abstract][Full Text] [Related]
2. Pseudolikelihood decimation algorithm improving the inference of the interaction network in a general class of Ising models. Decelle A; Ricci-Tersenghi F Phys Rev Lett; 2014 Feb; 112(7):070603. PubMed ID: 24579583 [TBL] [Abstract][Full Text] [Related]
3. Inference of the kinetic Ising model with heterogeneous missing data. Campajola C; Lillo F; Tantari D Phys Rev E; 2019 Jun; 99(6-1):062138. PubMed ID: 31330593 [TBL] [Abstract][Full Text] [Related]
4. Inverse Ising problem in continuous time: A latent variable approach. Donner C; Opper M Phys Rev E; 2017 Dec; 96(6-1):062104. PubMed ID: 29347355 [TBL] [Abstract][Full Text] [Related]
5. Inverse problem for multi-body interaction of nonlinear waves. Marruzzo A; Tyagi P; Antenucci F; Pagnani A; Leuzzi L Sci Rep; 2017 Jun; 7(1):3463. PubMed ID: 28615631 [TBL] [Abstract][Full Text] [Related]
6. Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function. Lippiello E; Corberi F; Zannetti M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036104. PubMed ID: 15903490 [TBL] [Abstract][Full Text] [Related]
7. Random quantum Ising chains with competing interactions. Carpentier D; Pujol P; Giering KU Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066101. PubMed ID: 16486004 [TBL] [Abstract][Full Text] [Related]
8. Improving landscape inference by integrating heterogeneous data in the inverse Ising problem. Barrat-Charlaix P; Figliuzzi M; Weigt M Sci Rep; 2016 Nov; 6():37812. PubMed ID: 27886273 [TBL] [Abstract][Full Text] [Related]
9. An adaptive shortest-solution guided decimation approach to sparse high-dimensional linear regression. Yu X; Sun Y; Zhou HJ Sci Rep; 2021 Dec; 11(1):24034. PubMed ID: 34911986 [TBL] [Abstract][Full Text] [Related]
10. Inverse Ising inference using all the data. Aurell E; Ekeberg M Phys Rev Lett; 2012 Mar; 108(9):090201. PubMed ID: 22463617 [TBL] [Abstract][Full Text] [Related]
11. Learning and inference in a nonequilibrium Ising model with hidden nodes. Dunn B; Roudi Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022127. PubMed ID: 23496479 [TBL] [Abstract][Full Text] [Related]
12. Large pseudocounts and L2-norm penalties are necessary for the mean-field inference of Ising and Potts models. Barton JP; Cocco S; De Leonardis E; Monasson R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012132. PubMed ID: 25122276 [TBL] [Abstract][Full Text] [Related]
13. Fluctuation-dissipation relations and field-free algorithms for the computation of response functions. Corberi F; Lippiello E; Sarracino A; Zannetti M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011124. PubMed ID: 20365340 [TBL] [Abstract][Full Text] [Related]
14. Inference of regulatory networks through temporally sparse data. Alali M; Imani M Front Control Eng; 2022; 3():. PubMed ID: 36582942 [TBL] [Abstract][Full Text] [Related]
15. Inferring structural connectivity using Ising couplings in models of neuronal networks. Kadirvelu B; Hayashi Y; Nasuto SJ Sci Rep; 2017 Aug; 7(1):8156. PubMed ID: 28811468 [TBL] [Abstract][Full Text] [Related]