These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26066173)

  • 1. Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.
    Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052303. PubMed ID: 26066173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of wall-mediated hydrodynamic fluctuations on the kinetics of a Brownian nanoparticle.
    Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Proc Math Phys Eng Sci; 2016 Dec; 472(2196):20160397. PubMed ID: 28119544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesion of a polymer-grafted nanoparticle to cells explored using generalized Langevin dynamics.
    Wu YW; Yu HY
    Soft Matter; 2018 Dec; 14(48):9910-9922. PubMed ID: 30475366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective temperatures of hot Brownian motion.
    Falasco G; Gnann MV; Rings D; Kroy K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032131. PubMed ID: 25314419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium.
    Uma B; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Mol Phys; 2012; 110(11-12):1057-1067. PubMed ID: 22865935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Hydrodynamic Backflow on the Transmission Coefficient of a Barrier-Crossing Brownian Particle.
    Cherayil BJ
    J Phys Chem B; 2022 Aug; 126(30):5629-5636. PubMed ID: 35894587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall.
    Vitoshkin H; Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev Fluids; 2016; 1():. PubMed ID: 27830213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields.
    Uma B; Swaminathan TN; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    Phys Fluids (1994); 2011 Jul; 23(7):73602-7360215. PubMed ID: 21918592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium.
    Grebenkov DS; Vahabi M; Bertseva E; Forró L; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):040701. PubMed ID: 24229100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand-mediated adhesive dynamics of a spherical particle in wall-bound shear flow.
    Ramesh KV; Thaokar R; Prakash JR; Prabhakar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022302. PubMed ID: 25768500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillations and negative velocity autocorrelation emerging from a Brownian particle model with hydrodynamic interactions.
    Viñales AD; Camuyrano M; Paissan GH
    Phys Rev E; 2020 May; 101(5-1):052140. PubMed ID: 32575187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of nanoparticle diffusion in unentangled and entangled polymer melts.
    Yamamoto U; Schweizer KS
    J Chem Phys; 2011 Dec; 135(22):224902. PubMed ID: 22168722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Nonequilibrium Thermodynamics.
    Radhakrishnan R; Yu HY; Eckmann DM; Ayyaswamy PS
    J Heat Transfer; 2017 Mar; 139(3):0330011-330019. PubMed ID: 28035168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized Langevin dynamics of a nanoparticle using a finite element approach: thermostating with correlated noise.
    Uma B; Swaminathan TN; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    J Chem Phys; 2011 Sep; 135(11):114104. PubMed ID: 21950847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface.
    Dani A; Yeganeh M; Maldarelli C
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):931-945. PubMed ID: 36037716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal Multiscale Approach for Nanocarrier Motion with Simultaneous Adhesion and Hydrodynamic Interactions in Targeted Drug Delivery.
    Radhakrishnan R; Uma B; Liu J; Ayyaswamy PS; Eckmann DM
    J Comput Phys; 2013 Jul; 244():252-263. PubMed ID: 23853388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian motion of a charged particle driven internally by correlated noise.
    Paraan FN; Solon MP; Esguerra JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):022101. PubMed ID: 18352065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Proc ASME Micro Nanoscale Heat Mass Transf Int Conf (2012); 2012 Mar; 2012():735-743. PubMed ID: 25621317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.