BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26066201)

  • 1. State transitions and decoherence in the avian compass.
    Poonia VS; Saha D; Ganguly S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052709. PubMed ID: 26066201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum dynamics of the avian compass.
    Walters ZB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042710. PubMed ID: 25375526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional window of the avian compass.
    Poonia VS; Kondabagil K; Saha D; Ganguly S
    Phys Rev E; 2017 May; 95(5-1):052417. PubMed ID: 28618572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity and entanglement in the avian chemical compass.
    Zhang Y; Berman GP; Kais S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042707. PubMed ID: 25375523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum coherence and entanglement in the avian compass.
    Pauls JA; Zhang Y; Berman GP; Kais S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062704. PubMed ID: 23848712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoherence in the chemical compass: the role of decoherence for avian magnetoreception.
    Tiersch M; Briegel HJ
    Philos Trans A Math Phys Eng Sci; 2012 Sep; 370(1975):4517-40. PubMed ID: 22908340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environment-induced anisotropy and sensitivity of the radical pair mechanism in the avian compass.
    Carrillo A; Cornelio MF; de Oliveira MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012720. PubMed ID: 26274215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception.
    Worster S; Kattnig DR; Hore PJ
    J Chem Phys; 2016 Jul; 145(3):035104. PubMed ID: 27448908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The quantum Zeno effect immunizes the avian compass against the deleterious effects of exchange and dipolar interactions.
    Dellis AT; Kominis IK
    Biosystems; 2012 Mar; 107(3):153-7. PubMed ID: 22142839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum coherence and sensitivity of avian magnetoreception.
    Bandyopadhyay JN; Paterek T; Kaszlikowski D
    Phys Rev Lett; 2012 Sep; 109(11):110502. PubMed ID: 23005606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the properties of the radical-pair magnetoreceptor using pulsed photo-excitation timed with pulsed rf.
    Mouloudakis K; Kominis IK
    Biosystems; 2016 Sep; 147():35-9. PubMed ID: 27450635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entanglement and sources of magnetic anisotropy in radical pair-based avian magnetoreceptors.
    Hogben HJ; Biskup T; Hore PJ
    Phys Rev Lett; 2012 Nov; 109(22):220501. PubMed ID: 23368109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the hyperfine coupling parameters of the avian compass by comprehensively considering the available experimental results.
    Xu BM; Zou J; Li JG; Shao B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032703. PubMed ID: 24125290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quantum needle of the avian magnetic compass.
    Hiscock HG; Worster S; Kattnig DR; Steers C; Jin Y; Manolopoulos DE; Mouritsen H; Hore PJ
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4634-9. PubMed ID: 27044102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of radio frequency fields on the radical pair magnetoreception model.
    Xu BM; Zou J; Li H; Li JG; Shao B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042711. PubMed ID: 25375527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance effects indicate a radical-pair mechanism for avian magnetic compass.
    Ritz T; Thalau P; Phillips JB; Wiltschko R; Wiltschko W
    Nature; 2004 May; 429(6988):177-80. PubMed ID: 15141211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron spin relaxation in cryptochrome-based magnetoreception.
    Kattnig DR; Solov'yov IA; Hore PJ
    Phys Chem Chem Phys; 2016 May; 18(18):12443-56. PubMed ID: 27020113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the use of magnets to disrupt the physiological compass of birds.
    Wang K; Mattern E; Ritz T
    Phys Biol; 2006 Oct; 3(3):220-31. PubMed ID: 17021386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observations about utilitarian coherence in the avian compass.
    Smith LD; Deviers J; Kattnig DR
    Sci Rep; 2022 Apr; 12(1):6011. PubMed ID: 35397661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical-Pair-Based Magnetoreception Amplified by Radical Scavenging: Resilience to Spin Relaxation.
    Kattnig DR
    J Phys Chem B; 2017 Nov; 121(44):10215-10227. PubMed ID: 29028342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.