These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 26066239)
1. Elastic enhancement factor: From mesoscopic systems to macroscopic analogous devices. Sokolov VV; Zhirov OV Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052917. PubMed ID: 26066239 [TBL] [Abstract][Full Text] [Related]
2. Experimental investigation of the elastic enhancement factor in a microwave cavity emulating a chaotic scattering system with varying openness. Białous M; Dietz B; Sirko L Phys Rev E; 2019 Jul; 100(1-1):012210. PubMed ID: 31499840 [TBL] [Abstract][Full Text] [Related]
3. Resonance poles and width distribution for time-reversal transport through mesoscopic open billiards. Ishio H Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):R3035-8. PubMed ID: 11088872 [TBL] [Abstract][Full Text] [Related]
4. Distribution of scattering matrix elements in quantum chaotic scattering. Kumar S; Nock A; Sommers HJ; Guhr T; Dietz B; Miski-Oglu M; Richter A; Schäfer F Phys Rev Lett; 2013 Jul; 111(3):030403. PubMed ID: 23909297 [TBL] [Abstract][Full Text] [Related]
5. How time-reversal-invariance violation leads to enhanced backscattering with increasing openness of a wave-chaotic system. Białous M; Dietz B; Sirko L Phys Rev E; 2020 Oct; 102(4-1):042206. PubMed ID: 33212639 [TBL] [Abstract][Full Text] [Related]
6. Wave function statistics for ballistic quantum transport through chaotic open billiards: statistical crossover and coexistence of regular and chaotic waves. Ishio H; Saichev AI; Sadreev AF; Berggren KF Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056208. PubMed ID: 11736055 [TBL] [Abstract][Full Text] [Related]
7. Mixed quantum/classical calculations of total and differential elastic and rotationally inelastic scattering cross sections for light and heavy reduced masses in a broad range of collision energies. Semenov A; Babikov D J Chem Phys; 2014 Jan; 140(4):044306. PubMed ID: 25669522 [TBL] [Abstract][Full Text] [Related]
8. Experimental investigation of the enhancement factor for microwave irregular networks with preserved and broken time reversal symmetry in the presence of absorption. Ławniczak M; Bauch S; Hul O; Sirko L Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046204. PubMed ID: 20481804 [TBL] [Abstract][Full Text] [Related]
9. Experimental investigation of the elastic enhancement factor in a transient region between regular and chaotic dynamics. Ławniczak M; Białous M; Yunko V; Bauch S; Sirko L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032925. PubMed ID: 25871190 [TBL] [Abstract][Full Text] [Related]
11. Experimental study of the elastic enhancement factor in a three-dimensional wave-chaotic microwave resonator exhibiting strongly overlapping resonances. Białous M; Dietz B; Sirko L Phys Rev E; 2023 May; 107(5-1):054210. PubMed ID: 37328966 [TBL] [Abstract][Full Text] [Related]
12. Spectral properties and dynamical tunneling in constant-width billiards. Dietz B; Guhr T; Gutkin B; Miski-Oglu M; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022903. PubMed ID: 25215795 [TBL] [Abstract][Full Text] [Related]
13. Breaking time reversal in a simple smooth chaotic system. Tomsovic S; Ullmo D; Nagano T Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):067201. PubMed ID: 16241389 [TBL] [Abstract][Full Text] [Related]
14. Understanding quantum scattering properties in terms of purely classical dynamics: two-dimensional open chaotic billiards. Méndez-Bermúdez JA; Luna-Acosta GA; Seba P; Pichugin KN Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046207. PubMed ID: 12443299 [TBL] [Abstract][Full Text] [Related]
15. Crossover from regular to irregular behavior in current flow through open billiards. Berggren KF; Sadreev AF; Starikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472 [TBL] [Abstract][Full Text] [Related]
16. Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics. Dembowski C; Dietz B; Friedrich T; Gräf HD; Harney HL; Heine A; Miski-Oglu M; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046202. PubMed ID: 15903765 [TBL] [Abstract][Full Text] [Related]
17. Periodic chaotic billiards: quantum-classical correspondence in energy space. Luna-Acosta GA; Méndez-Bermúdez JA; Izrailev FM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036206. PubMed ID: 11580421 [TBL] [Abstract][Full Text] [Related]
18. Coupling between positron-atom scattering channels above the first inelastic threshold. Coleman PG; Cheesman N; Lowry ER Phys Rev Lett; 2009 May; 102(17):173201. PubMed ID: 19518780 [TBL] [Abstract][Full Text] [Related]
19. Electronic transport in chaotic mesoscopic cavities: A Kwant and random matrix theory based exploration. Chandramouli RS; Srivastav RK; Kumar S Chaos; 2020 Dec; 30(12):123120. PubMed ID: 33380063 [TBL] [Abstract][Full Text] [Related]