These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 26066275)
1. Measuring free energy in spin-lattice models using parallel tempering Monte Carlo. Wang W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053303. PubMed ID: 26066275 [TBL] [Abstract][Full Text] [Related]
2. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering. Wang W; Machta J; Katzgraber HG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013303. PubMed ID: 26274303 [TBL] [Abstract][Full Text] [Related]
3. Correlations between the dynamics of parallel tempering and the free-energy landscape in spin glasses. Yucesoy B; Machta J; Katzgraber HG Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012104. PubMed ID: 23410280 [TBL] [Abstract][Full Text] [Related]
4. Population annealing: Theory and application in spin glasses. Wang W; Machta J; Katzgraber HG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063307. PubMed ID: 26764853 [TBL] [Abstract][Full Text] [Related]
5. Extended state-space Monte Carlo methods. Opps SB; Schofield J Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056701. PubMed ID: 11415039 [TBL] [Abstract][Full Text] [Related]
6. Population annealing with weighted averages: a Monte Carlo method for rough free-energy landscapes. Machta J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026704. PubMed ID: 20866937 [TBL] [Abstract][Full Text] [Related]
7. Analysis and optimization of population annealing. Amey C; Machta J Phys Rev E; 2018 Mar; 97(3-1):033301. PubMed ID: 29776070 [TBL] [Abstract][Full Text] [Related]
8. Comparing different protocols of temperature selection in the parallel tempering method. Fiore CE J Chem Phys; 2011 Sep; 135(11):114107. PubMed ID: 21950850 [TBL] [Abstract][Full Text] [Related]
9. Evidence of non-mean-field-like low-temperature behavior in the Edwards-Anderson spin-glass model. Yucesoy B; Katzgraber HG; Machta J Phys Rev Lett; 2012 Oct; 109(17):177204. PubMed ID: 23215219 [TBL] [Abstract][Full Text] [Related]
10. Increasing the Efficiency of Free Energy Calculations Using Parallel Tempering and Histogram Reweighting. Rick SW J Chem Theory Comput; 2006 Jul; 2(4):939-46. PubMed ID: 26633053 [TBL] [Abstract][Full Text] [Related]
11. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination. Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077 [TBL] [Abstract][Full Text] [Related]
12. Strengths and weaknesses of parallel tempering. Machta J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056706. PubMed ID: 20365095 [TBL] [Abstract][Full Text] [Related]
13. Make life simple: unleash the full power of the parallel tempering algorithm. Bittner E; Nubbaumer A; Janke W Phys Rev Lett; 2008 Sep; 101(13):130603. PubMed ID: 18851432 [TBL] [Abstract][Full Text] [Related]
14. Reaching the ground state of a quantum spin glass using a zero-temperature quantum Monte Carlo method. Das A; Chakrabarti BK Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061121. PubMed ID: 19256816 [TBL] [Abstract][Full Text] [Related]
15. Adaptive Markov chain Monte Carlo for auxiliary variable method and its application to parallel tempering. Araki T; Ikeda K Neural Netw; 2013 Jul; 43():33-40. PubMed ID: 23500498 [TBL] [Abstract][Full Text] [Related]
16. Efficient Monte Carlo algorithm in quasi-one-dimensional Ising spin systems. Nakamura T Phys Rev Lett; 2008 Nov; 101(21):210602. PubMed ID: 19113399 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of selected parallel tempering methods. Malakis A; Papakonstantinou T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013312. PubMed ID: 23944588 [TBL] [Abstract][Full Text] [Related]
19. Quantum annealing of an Ising spin-glass by Green's function Monte Carlo. Stella L; Santoro GE Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036703. PubMed ID: 17500822 [TBL] [Abstract][Full Text] [Related]
20. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Wang F; Landau DP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056101. PubMed ID: 11736008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]