These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 26066277)
1. Phase-field crystal model for a diamond-cubic structure. Chan VW; Pisutha-Arnond N; Thornton K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053305. PubMed ID: 26066277 [TBL] [Abstract][Full Text] [Related]
2. Temperature dependence of the crystal-liquid interfacial free energy and the endpoint of the melting line. Baidakov VG; Protsenko SP; Tipeev AO J Chem Phys; 2013 Dec; 139(22):224703. PubMed ID: 24329078 [TBL] [Abstract][Full Text] [Related]
3. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry. Noya EG; Vega C; Doye JP; Louis AA J Chem Phys; 2010 Jun; 132(23):234511. PubMed ID: 20572725 [TBL] [Abstract][Full Text] [Related]
4. Solid-liquid interfacial energies and equilibrium shapes of nanocrystals. Backofen R; Voigt A J Phys Condens Matter; 2009 Nov; 21(46):464109. PubMed ID: 21715873 [TBL] [Abstract][Full Text] [Related]
5. Phase-field-crystal methodology for modeling of structural transformations. Greenwood M; Rottler J; Provatas N Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031601. PubMed ID: 21517507 [TBL] [Abstract][Full Text] [Related]
6. Global phase diagram for the honeycomb potential. Hynninen AP; Panagiotopoulos AZ; Rechtsman MC; Stillinger FH; Torquato S J Chem Phys; 2006 Jul; 125(2):24505. PubMed ID: 16848590 [TBL] [Abstract][Full Text] [Related]
7. Modified phase-field-crystal model for solid-liquid phase transitions. Guo C; Wang J; Wang Z; Li J; Guo Y; Tang S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013309. PubMed ID: 26274309 [TBL] [Abstract][Full Text] [Related]
8. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region. Tóth GI; Gránásy L J Chem Phys; 2007 Aug; 127(7):074709. PubMed ID: 17718629 [TBL] [Abstract][Full Text] [Related]
9. Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems. Kundin J; Choudhary MA Phys Rev E; 2016 Jul; 94(1-1):012801. PubMed ID: 27575196 [TBL] [Abstract][Full Text] [Related]
10. Step free energies at faceted solid-liquid interfaces from equilibrium molecular dynamics simulations. Frolov T; Asta M J Chem Phys; 2012 Dec; 137(21):214108. PubMed ID: 23231218 [TBL] [Abstract][Full Text] [Related]
11. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs-Cahn integration. Laird BB; Davidchack RL; Yang Y; Asta M J Chem Phys; 2009 Sep; 131(11):114110. PubMed ID: 19778103 [TBL] [Abstract][Full Text] [Related]
12. Density functional theory of liquid crystals and surface anchoring: hard Gaussian overlap-sphere and hard Gaussian overlap-surface potentials. Avazpour A; Avazpour L J Chem Phys; 2010 Dec; 133(24):244701. PubMed ID: 21198002 [TBL] [Abstract][Full Text] [Related]
13. Phase-field crystal model with a vapor phase. Schwalbach EJ; Warren JA; Wu KA; Voorhees PW Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023306. PubMed ID: 24032965 [TBL] [Abstract][Full Text] [Related]
14. Statistical temperature molecular dynamics simulations applied to phase transitions in liquid crystalline systems. Lintuvuori JS; Wilson MR J Chem Phys; 2010 Jun; 132(22):224902. PubMed ID: 20550414 [TBL] [Abstract][Full Text] [Related]
16. Calculation of the crystal-melt interfacial free energy of succinonitrile from molecular simulation. Feng X; Laird BB J Chem Phys; 2006 Jan; 124(4):044707. PubMed ID: 16460200 [TBL] [Abstract][Full Text] [Related]
17. Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces. Mu Y; Houk A; Song X J Phys Chem B; 2005 Apr; 109(14):6500-4. PubMed ID: 16851729 [TBL] [Abstract][Full Text] [Related]
18. Inverse method for the determination of a mathematical expression for the anisotropy of the solid-liquid interfacial energy in Al-Zn-Si alloys. Niederberger C; Michler J; Jacot A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021604. PubMed ID: 17025443 [TBL] [Abstract][Full Text] [Related]
19. Classical density functional theory and the phase-field crystal method using a rational function to describe the two-body direct correlation function. Pisutha-Arnond N; Chan VW; Iyer M; Gavini V; Thornton K Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013313. PubMed ID: 23410466 [TBL] [Abstract][Full Text] [Related]
20. Discrete elastic model for two-dimensional melting. Lansac Y; Glaser MA; Clark NA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041501. PubMed ID: 16711803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]