These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26066679)

  • 1. Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs.
    Rocco M; Byron O
    Eur Biophys J; 2015 Sep; 44(6):417-31. PubMed ID: 26066679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic Modeling and Its Application in AUC.
    Rocco M; Byron O
    Methods Enzymol; 2015; 562():81-108. PubMed ID: 26412648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite.
    Brookes E; Rocco M
    Eur Biophys J; 2018 Oct; 47(7):855-864. PubMed ID: 29594411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule.
    Brookes E; Demeler B; Rosano C; Rocco M
    Eur Biophys J; 2010 Feb; 39(3):423-35. PubMed ID: 19234696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developments in the US-SOMO bead modeling suite: new features in the direct residue-to-bead method, improved grid routines, and influence of accessible surface area screening.
    Brookes E; Demeler B; Rocco M
    Macromol Biosci; 2010 Jul; 10(7):746-53. PubMed ID: 20480513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
    Byron O
    Methods Cell Biol; 2008; 84():327-73. PubMed ID: 17964937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models.
    Ortega A; Amorós D; García de la Torre J
    Biophys J; 2011 Aug; 101(4):892-8. PubMed ID: 21843480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting macromolecular hydration with HullRadSAS.
    Fleming PJ; Correia JJ; Fleming KG
    Eur Biophys J; 2023 Jul; 52(4-5):215-224. PubMed ID: 36602579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods and tools for the prediction of hydrodynamic coefficients and other solution properties of flexible macromolecules in solution. A tutorial minireview.
    García de la Torre J; Ortega A; Amorós D; Rodríguez Schmidt R; Hernández Cifre JG
    Macromol Biosci; 2010 Jul; 10(7):721-30. PubMed ID: 20461749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational diffusion of macromolecules and nanoparticles modeled as non-overlapping bead arrays in an effective medium.
    Allison S; Pei H; Haynes M; Xin Y; Law L; Labrum J; Augustin D
    J Phys Chem B; 2008 May; 112(18):5858-66. PubMed ID: 18416571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic radii and diffusion coefficients of particle aggregates derived from the bead model.
    Adamczyk Z; Sadlej K; Wajnryb E; Ekiel-Jezewska ML; Warszyński P
    J Colloid Interface Sci; 2010 Jul; 347(2):192-201. PubMed ID: 20430400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic Properties of Biomacromolecules and Macromolecular Complexes: Concepts and Methods. A Tutorial Mini-review.
    García de la Torre J; Hernández Cifre JG
    J Mol Biol; 2020 Apr; 432(9):2930-2948. PubMed ID: 31877325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.
    Zuk PJ; Cichocki B; Szymczak P
    Biophys J; 2018 Sep; 115(5):782-800. PubMed ID: 30144937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the US-SOMO-AF database: a new website for hydrodynamic, structural, and circular dichroism calculations on user-supplied structures.
    Brookes EH; Rocco M
    Eur Biophys J; 2023 Jul; 52(4-5):225-232. PubMed ID: 36853343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic multibead modeling: problems, pitfalls and solutions. 3. Comparison of new approaches for improved predictions of translational properties.
    Zipper P; Durchschlag H
    Eur Biophys J; 2013 Jul; 42(7):559-73. PubMed ID: 23700224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding in biological systems: hydrodynamics and NMR methods.
    Bernadó P; García de la Torre J; Pons M
    J Mol Recognit; 2004; 17(5):397-407. PubMed ID: 15362098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the two-body diffusion tensor calculated by the bead models.
    Wang N; Huber GA; McCammon JA
    J Chem Phys; 2013 May; 138(20):204117. PubMed ID: 23742464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation parameters of linear macromolecules from velocity sedimentation and other hydrodynamic methods.
    Pavlov GM; Perevyazko IY; Okatova OV; Schubert US
    Methods; 2011 May; 54(1):124-35. PubMed ID: 21320600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation.
    Brown PH; Schuck P
    Biophys J; 2006 Jun; 90(12):4651-61. PubMed ID: 16565040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrinogen species as resolved by HPLC-SAXS data processing within the
    Brookes E; Pérez J; Cardinali B; Profumo A; Vachette P; Rocco M
    J Appl Crystallogr; 2013 Dec; 46(Pt 6):1823-1833. PubMed ID: 24282333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.