These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26066737)

  • 1. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency.
    Gong Y; Liu Q; Wilt JS; Gong M; Ren S; Wu J
    Sci Rep; 2015 Jun; 5():11328. PubMed ID: 26066737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors.
    Lu R; Christianson C; Kirkeminde A; Ren S; Wu J
    Nano Lett; 2012 Dec; 12(12):6244-9. PubMed ID: 23130570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing the Interface of Carbon Nanotube/Biomaterials for High-Performance Ultra-Broadband Photodetection.
    Gong Y; Adhikari P; Liu Q; Wang T; Gong M; Chan WL; Ching WY; Wu J
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11016-11024. PubMed ID: 28263551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.
    Dowgiallo AM; Mistry KS; Johnson JC; Reid OG; Blackburn JL
    J Phys Chem Lett; 2016 May; 7(10):1794-9. PubMed ID: 27127916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-standing single-walled carbon nanotube-CdSe quantum dots hybrid ultrathin films for flexible optoelectronic conversion devices.
    Shi Z; Liu C; Lv W; Shen H; Wang D; Chen L; Li LS; Jin J
    Nanoscale; 2012 Aug; 4(15):4515-21. PubMed ID: 22695781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High photoresponse in hybrid graphene-carbon nanotube infrared detectors.
    Lu R; Christianson C; Weintrub B; Wu JZ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11703-7. PubMed ID: 24164551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared Light-Emitting Diodes Based on Chirality-Sorted Carbon Nanotube Films.
    Han B; Li Y; Wu W; Cai X; Qiu S; He X; Wang S
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4975-4983. PubMed ID: 38233025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable range hopping in single-wall carbon nanotube thin films: a processing-structure-property relationship study.
    Luo S; Liu T; Benjamin SM; Brooks JS
    Langmuir; 2013 Jul; 29(27):8694-702. PubMed ID: 23751088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.
    Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y
    Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating.
    Theocharous E; Engtrakul C; Dillon AC; Lehman J
    Appl Opt; 2008 Aug; 47(22):3999-4003. PubMed ID: 18670553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Nanotube Far Infrared Detectors with High Responsivity and Superior Polarization Selectivity Based on Engineered Optical Antennas.
    Ren X; Ji Z; Chen B; Zhou J; Chu Z; Chen X
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications.
    Boghossian AA; Zhang J; Barone PW; Reuel NF; Kim JH; Heller DA; Ahn JH; Hilmer AJ; Rwei A; Arkalgud JR; Zhang CT; Strano MS
    ChemSusChem; 2011 Jul; 4(7):848-63. PubMed ID: 21751417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistive and Capacitive γ-Ray Dosimeters Based On Triggered Depolymerization in Carbon Nanotube Composites.
    Zeininger L; He M; Hobson ST; Swager TM
    ACS Sens; 2018 May; 3(5):976-983. PubMed ID: 29558118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating water transport through a charged SWCNT: a molecular dynamics simulation.
    Lu D
    Phys Chem Chem Phys; 2013 Sep; 15(34):14447-57. PubMed ID: 23884179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Al3+-directed self-assembly and their electrochemistry properties of three-dimensional dendriform horseradish peroxidase/polyacrylamide/platinum/single-walled carbon nanotube composite film.
    Xie J; Feng X; Hu J; Chen X; Li A
    Biosens Bioelectron; 2010 Jan; 25(5):1186-92. PubMed ID: 19896821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation.
    D'Souza F; Das SK; Zandler ME; Sandanayaka AS; Ito O
    J Am Chem Soc; 2011 Dec; 133(49):19922-30. PubMed ID: 22088093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery.
    Santosh M; Panigrahi S; Bhattacharyya D; Sood AK; Maiti PK
    J Chem Phys; 2012 Feb; 136(6):065106. PubMed ID: 22360226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge injection in high-κ gate dielectrics of single-walled carbon nanotube thin-film transistors.
    McMorrow JJ; Cress CD; Affouda CA
    ACS Nano; 2012 Jun; 6(6):5040-50. PubMed ID: 22545966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an ALD-Pt@SWCNT/Graphene 3D Nanohybrid Architecture for Hydrogen Sensing.
    Liu B; Alamri M; Walsh M; Doolin JL; Berrie CL; Wu JZ
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53115-53124. PubMed ID: 33200602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces.
    Bindl DJ; Safron NS; Arnold MS
    ACS Nano; 2010 Oct; 4(10):5657-64. PubMed ID: 20923182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.