These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26066971)

  • 1. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode.
    Bajracharya S; ter Heijne A; Dominguez Benetton X; Vanbroekhoven K; Buisman CJ; Strik DP; Pant D
    Bioresour Technol; 2015 Nov; 195():14-24. PubMed ID: 26066971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon.
    Beese-Vasbender PF; Grote JP; Garrelfs J; Stratmann M; Mayrhofer KJ
    Bioelectrochemistry; 2015 Apr; 102():50-5. PubMed ID: 25486337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells.
    Nie H; Zhang T; Cui M; Lu H; Lovley DR; Russell TP
    Phys Chem Chem Phys; 2013 Sep; 15(34):14290-4. PubMed ID: 23881181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO₂.
    Patil SA; Arends JB; Vanwonterghem I; van Meerbergen J; Guo K; Tyson GW; Rabaey K
    Environ Sci Technol; 2015 Jul; 49(14):8833-43. PubMed ID: 26079858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.
    Lu L; Zeng C; Wang L; Yin X; Jin S; Lu A; Jason Ren Z
    Sci Rep; 2015 Nov; 5():16242. PubMed ID: 26573014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetate enhances startup of a H₂-producing microbial biocathode.
    Jeremiasse AW; Hamelers HV; Croese E; Buisman CJ
    Biotechnol Bioeng; 2012 Mar; 109(3):657-64. PubMed ID: 22012403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfide-driven microbial electrosynthesis.
    Gong Y; Ebrahim A; Feist AM; Embree M; Zhang T; Lovley D; Zengler K
    Environ Sci Technol; 2013 Jan; 47(1):568-73. PubMed ID: 23252645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.
    Dumas C; Mollica A; Féron D; Basseguy R; Etcheverry L; Bergel A
    Bioresour Technol; 2008 Dec; 99(18):8887-94. PubMed ID: 18558485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source.
    Jourdin L; Freguia S; Donose BC; Keller J
    Bioelectrochemistry; 2015 Apr; 102():56-63. PubMed ID: 25497168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
    Zaybak Z; Pisciotta JM; Tokash JC; Logan BE
    J Biotechnol; 2013 Dec; 168(4):478-85. PubMed ID: 24126154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.
    Luo X; Zhang F; Liu J; Zhang X; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(15):8911-8. PubMed ID: 25010133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a non-precious metal catalyst for long-term enhancement of methane production in a zero-gap microbial electrosynthesis cell.
    Bian B; Yu N; Akbari A; Shi L; Zhou X; Xie C; Saikaly PE; Logan BE
    Water Res; 2024 Aug; 259():121815. PubMed ID: 38820732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens.
    Geelhoed JS; Stams AJ
    Environ Sci Technol; 2011 Jan; 45(2):815-20. PubMed ID: 21158443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover.
    Liang B; Cheng H; Van Nostrand JD; Ma J; Yu H; Kong D; Liu W; Ren N; Wu L; Wang A; Lee DJ; Zhou J
    Water Res; 2014 May; 54():137-48. PubMed ID: 24565804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems.
    Guo K; Donose BC; Soeriyadi AH; Prévoteau A; Patil SA; Freguia S; Gooding JJ; Rabaey K
    Environ Sci Technol; 2014 Jun; 48(12):7151-6. PubMed ID: 24911921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different hydrogen evolution rates at cathode on bioelectrochemical reduction of CO
    Liu H; Zeng Y; Chen W; Liu C; Sun D; Hu Z; Li P; Xu H; Wu H; Qiu B; Liu X; Dang Y
    Sci Total Environ; 2024 Feb; 913():169744. PubMed ID: 38176559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells.
    Luo H; Fu S; Liu G; Zhang R; Bai Y; Luo X
    Bioresour Technol; 2014 Sep; 167():462-8. PubMed ID: 25006022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial electrosynthesis of butyrate from carbon dioxide.
    Ganigué R; Puig S; Batlle-Vilanova P; Balaguer MD; Colprim J
    Chem Commun (Camb); 2015 Feb; 51(15):3235-8. PubMed ID: 25608945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnMo-MOF as anti-CO hydrogen electrocatalyst enhance microbial electrosynthesis for CO/CO
    Chen Y; Chen Y; Dai DZ; Li XL; Song T; Xie J
    Chemosphere; 2024 Jun; 358():142157. PubMed ID: 38679181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES).
    Srikanth S; Maesen M; Dominguez-Benetton X; Vanbroekhoven K; Pant D
    Bioresour Technol; 2014 Aug; 165():350-4. PubMed ID: 24565874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.