BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26067270)

  • 1. Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure.
    Toda A; Tsurumura T; Yoshida T; Tsumori Y; Tsuge H
    J Biol Chem; 2015 Aug; 290(32):19423-32. PubMed ID: 26067270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational plasticity is crucial for C3-RhoA complex formation by ARTT-loop.
    Tsuge H; Yoshida T; Tsurumura T
    Pathog Dis; 2015 Dec; 73(9):ftv094. PubMed ID: 26474844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the C3bot-RalA complex reveals a novel type of action of a bacterial exoenzyme.
    Pautsch A; Vogelsgesang M; Tränkle J; Herrmann C; Aktories K
    EMBO J; 2005 Oct; 24(20):3670-80. PubMed ID: 16177825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD binding induces conformational changes in Rho ADP-ribosylating clostridium botulinum C3 exoenzyme.
    Ménétrey J; Flatau G; Stura EA; Charbonnier JB; Gas F; Teulon JM; Le Du MH; Boquet P; Menez A
    J Biol Chem; 2002 Aug; 277(34):30950-7. PubMed ID: 12029083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase.
    Holbourn KP; Sutton JM; Evans HR; Shone CC; Acharya KR
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5357-62. PubMed ID: 15809419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of the Rho-ADP-ribosylating C3 exoenzyme with RalA.
    Wilde C; Barth H; Sehr P; Han L; Schmidt M; Just I; Aktories K
    J Biol Chem; 2002 Apr; 277(17):14771-6. PubMed ID: 11847234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate N
    Yoshida T; Tsuge H
    J Biol Chem; 2018 Sep; 293(36):13768-13774. PubMed ID: 30072382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody.
    Rohrbeck A; Fühner V; Schröder A; Hagemann S; Vu XK; Berndt S; Hust M; Pich A; Just I
    Toxins (Basel); 2016 Apr; 8(4):100. PubMed ID: 27043630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of RhoA by Clostridium botulinum C3 exoenzyme.
    Wilde C; Genth H; Aktories K; Just I
    J Biol Chem; 2000 Jun; 275(22):16478-83. PubMed ID: 10748216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADP-ribosylation of Rho proteins by Clostridium botulinum exoenzyme C3 is influenced by phosphorylation of Rho-associated factors.
    Fritz G; Aktories K
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):133-9. PubMed ID: 8198524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ADP-ribosylation by Clostridium botulinum C3 exoenzyme increases steady-state GTPase activities of recombinant rhoA and rhoB proteins.
    Mohr C; Koch G; Just I; Aktories K
    FEBS Lett; 1992 Feb; 297(1-2):95-9. PubMed ID: 1551445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus.
    Wilde C; Just I; Aktories K
    Biochemistry; 2002 Feb; 41(5):1539-44. PubMed ID: 11814347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site.
    Just I; Selzer J; Jung M; van Damme J; Vandekerckhove J; Aktories K
    Biochemistry; 1995 Jan; 34(1):334-40. PubMed ID: 7819216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum.
    Just I; Mohr C; Schallehn G; Menard L; Didsbury JR; Vandekerckhove J; van Damme J; Aktories K
    J Biol Chem; 1992 May; 267(15):10274-80. PubMed ID: 1587816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling.
    Sehr P; Joseph G; Genth H; Just I; Pick E; Aktories K
    Biochemistry; 1998 Apr; 37(15):5296-304. PubMed ID: 9548761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the NAD-hydrolysis mechanism and the ARTT-loop plasticity of C3 exoenzymes.
    Ménétrey J; Flatau G; Boquet P; Ménez A; Stura EA
    Protein Sci; 2008 May; 17(5):878-86. PubMed ID: 18369192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains.
    Forst AH; Karlberg T; Herzog N; Thorsell AG; Gross A; Feijs KL; Verheugd P; Kursula P; Nijmeijer B; Kremmer E; Kleine H; Ladurner AG; Schüler H; Lüscher B
    Structure; 2013 Mar; 21(3):462-75. PubMed ID: 23473667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the Clostridium limosum C3 exoenzyme.
    Vogelsgesang M; Stieglitz B; Herrmann C; Pautsch A; Aktories K
    FEBS Lett; 2008 Apr; 582(7):1032-6. PubMed ID: 18325337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.