These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Reproducibility of spectral-domain optical coherence tomography retinal thickness measurements and conversion to equivalent time-domain metrics in diabetic macular edema. ; Bressler SB; Edwards AR; Chalam KV; Bressler NM; Glassman AR; Jaffe GJ; Melia M; Saggau DD; Plous OZ JAMA Ophthalmol; 2014 Sep; 132(9):1113-22. PubMed ID: 25058482 [TBL] [Abstract][Full Text] [Related]
10. Comparison of retinal thicknesses measured using swept-source and spectral-domain optical coherence tomography devices. Tan CS; Chan JC; Cheong KX; Ngo WK; Sadda SR Ophthalmic Surg Lasers Imaging Retina; 2015 Feb; 46(2):172-9. PubMed ID: 25707041 [TBL] [Abstract][Full Text] [Related]
11. Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments. Tan BB; Natividad M; Chua KC; Yip LW J Glaucoma; 2012; 21(4):266-73. PubMed ID: 21637116 [TBL] [Abstract][Full Text] [Related]
12. Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration. Mylonas G; Ahlers C; Malamos P; Golbaz I; Deak G; Schuetze C; Sacu S; Schmidt-Erfurth U Br J Ophthalmol; 2009 Nov; 93(11):1453-60. PubMed ID: 19520692 [TBL] [Abstract][Full Text] [Related]
13. Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments. Pierro L; Gagliardi M; Iuliano L; Ambrosi A; Bandello F Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5912-20. PubMed ID: 22871835 [TBL] [Abstract][Full Text] [Related]
14. Fourier-domain OCT in multiple sclerosis patients: reproducibility and ability to detect retinal nerve fiber layer atrophy. Garcia-Martin E; Pueyo V; Pinilla I; Ara JR; Martin J; Fernandez J Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4124-31. PubMed ID: 21436273 [TBL] [Abstract][Full Text] [Related]
15. Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography. Waldstein SM; Faatz H; Szimacsek M; Glodan AM; Podkowinski D; Montuoro A; Simader C; Gerendas BS; Schmidt-Erfurth U Eye (Lond); 2015 Mar; 29(3):409-15. PubMed ID: 25592119 [TBL] [Abstract][Full Text] [Related]
16. Quality and reproducibility of retinal thickness measurements in two spectral-domain optical coherence tomography machines. Krebs I; Smretschnig E; Moussa S; Brannath W; Womastek I; Binder S Invest Ophthalmol Vis Sci; 2011 Sep; 52(9):6925-33. PubMed ID: 21791591 [TBL] [Abstract][Full Text] [Related]
17. Comparison of central retinal thickness in healthy children and adults measured with the Heidelberg Spectralis OCT and the zeiss Stratus OCT 3. Chopovska Y; Jaeger M; Rambow R; Lorenz B Ophthalmologica; 2011; 225(1):27-36. PubMed ID: 20693819 [TBL] [Abstract][Full Text] [Related]
19. Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson's disease. Garcia-Martin E; Satue M; Fuertes I; Otin S; Alarcia R; Herrero R; Bambo MP; Fernandez J; Pablo LE Ophthalmology; 2012 Oct; 119(10):2161-7. PubMed ID: 22749083 [TBL] [Abstract][Full Text] [Related]
20. A novel technique of adjusting segmentation boundary layers to achieve comparability of retinal thickness and volumes between spectral domain and time domain optical coherence tomography. Tan CS; Li KZ; Lim TH Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5515-9. PubMed ID: 22786905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]