These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26067491)

  • 1. Treacherous Pavements: Paving Slab Patterns Modify Intended Walking Directions.
    Leonards U; Fennell JG; Oliva G; Drake A; Redmill DW
    PLoS One; 2015; 10(6):e0130034. PubMed ID: 26067491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stroke affects locomotor steering responses to changing optic flow directions.
    Lamontagne A; Fung J; McFadyen B; Faubert J; Paquette C
    Neurorehabil Neural Repair; 2010 Jun; 24(5):457-68. PubMed ID: 20067950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Echoic Sensory Substitution Information in a Single Obstacle Circumvention Task.
    Kolarik AJ; Scarfe AC; Moore BC; Pardhan S
    PLoS One; 2016; 11(8):e0160872. PubMed ID: 27494318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of optic flow perception and egocentric coordinates on veering in Parkinson's disease.
    Davidsdottir S; Wagenaar R; Young D; Cronin-Golomb A
    Brain; 2008 Nov; 131(Pt 11):2882-93. PubMed ID: 18957454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coordinate system for visual motion perception.
    Darling WG; Pizzimenti MA
    Exp Brain Res; 2001 Nov; 141(2):174-83. PubMed ID: 11713629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial stability, voluntary action and causal attribution during self-locomotion.
    Lackner JR; DiZio P
    J Vestib Res; 1993; 3(1):15-23. PubMed ID: 8275240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay between strategic and adaptive control mechanisms in plastic recalibration of locomotor function.
    Richards JT; Mulavara AP; Bloomberg JJ
    Exp Brain Res; 2007 Apr; 178(3):326-38. PubMed ID: 17061092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking through an aperture with visual information obtained at a distance.
    Muroi D; Higuchi T
    Exp Brain Res; 2017 Jan; 235(1):219-230. PubMed ID: 27687556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Look where you're going!": gaze behaviour associated with maintaining and changing the direction of locomotion.
    Hollands MA; Patla AE; Vickers JN
    Exp Brain Res; 2002 Mar; 143(2):221-30. PubMed ID: 11880898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceptual learning of orientation judgments in oblique meridians.
    Westheimer G; Lavian J
    Atten Percept Psychophys; 2013 Aug; 75(6):1252-9. PubMed ID: 23709066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trunk muscle proprioceptive input assists steering of locomotion.
    Schmid M; De Nunzio AM; Schieppati M
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):127-32. PubMed ID: 15885899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action strategies of individuals during aperture crossing in nonconfined space.
    Hackney AL; Vallis LA; Cinelli ME
    Q J Exp Psychol (Hove); 2013 Jun; 66(6):1104-12. PubMed ID: 23718874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of vestibular and visual stimulation on split-belt walking.
    Marques B; Colombo G; Müller R; Dürsteler MR; Dietz V; Straumann D
    Exp Brain Res; 2007 Dec; 183(4):457-63. PubMed ID: 17665177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does the passability of apertures change when walking through human versus pole obstacles?
    Hackney AL; Cinelli ME; Frank JS
    Acta Psychol (Amst); 2015 Nov; 162():62-8. PubMed ID: 26529484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path.
    Glasauer S; Amorim MA; Viaud-Delmon I; Berthoz A
    Exp Brain Res; 2002 Aug; 145(4):489-97. PubMed ID: 12172660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation?
    Chardenon A; Montagne G; Laurent M; Bootsma RJ
    Exp Brain Res; 2004 Sep; 158(1):100-8. PubMed ID: 15042262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor adjustments for circumvention of an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2003 Oct; 152(3):409-14. PubMed ID: 12904936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of discrepant retinal motion during walking in the realignment of egocentric space.
    Herlihey TA; Rushton SK
    J Vis; 2012 Mar; 12(3):. PubMed ID: 22396464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropies in judging the direction of moving natural scenes.
    Dakin SC; Apthorp D; Alais D
    J Vis; 2010 Sep; 10(11):5. PubMed ID: 20884500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.