These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26067877)

  • 1. Fundamental differences between glassy dynamics in two and three dimensions.
    Flenner E; Szamel G
    Nat Commun; 2015 Jun; 6():7392. PubMed ID: 26067877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic shear stress relaxation in two-dimensional glass-forming liquids.
    Flenner E; Szamel G
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2015-2020. PubMed ID: 30670658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inherent-state melting and the onset of glassy dynamics in two-dimensional supercooled liquids.
    Fraggedakis D; Hasyim MR; Mandadapu KK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2209144120. PubMed ID: 37000846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glass formation and thermodynamics of supercooled monatomic liquids.
    Hoang VV; Odagaki T
    J Phys Chem B; 2011 Jun; 115(21):6946-56. PubMed ID: 21553835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition.
    Weeks ER; Crocker JC; Levitt AC; Schofield A; Weitz DA
    Science; 2000 Jan; 287(5453):627-31. PubMed ID: 10649991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glassy orientational dynamics of rodlike molecules near the isotropic-nematic transition.
    Jana B; Chakrabarti D; Bagchi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011712. PubMed ID: 17677476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic glass-formers in 2D exhibit the same scaling as in 3D between vibrational dynamics and structural relaxation.
    Massa CA; Leporini D; Puosi F
    J Phys Condens Matter; 2020 Feb; 32(8):085701. PubMed ID: 31675741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of activated dynamics and glass transition of hard colloids in two dimensions.
    Zhang BK; Li HS; Tian WD; Chen K; Ma YQ
    J Chem Phys; 2014 Mar; 140(9):094506. PubMed ID: 24606367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of the glassy transition in simulations of the ferromagnetic plaquette Ising model.
    Davatolhagh S; Dariush D; Separdar L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031501. PubMed ID: 20365734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A characteristic energy scale in glasses.
    Lerner E; Bouchbinder E
    J Chem Phys; 2018 Jun; 148(21):214502. PubMed ID: 29884034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow dynamics and precursors of the glass transition in granular fluids.
    Gholami I; Fiege A; Zippelius A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031305. PubMed ID: 22060359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation mechanisms in glassy dynamics: the Arrhenius and fragile regimes.
    Hentschel HG; Karmakar S; Procaccia I; Zylberg J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061501. PubMed ID: 23005098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of glassy-state dynamics from the width of the glass transition: results from theoretical simulation of differential scanning calorimetry and comparisons with experiment.
    Pikal MJ; Chang LL; Tang XC
    J Pharm Sci; 2004 Apr; 93(4):981-94. PubMed ID: 14999734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation dynamics in a binary hard-ellipse liquid.
    Xu WS; Sun ZY; An LJ
    Soft Matter; 2015 Jan; 11(3):627-34. PubMed ID: 25466776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids.
    Saha D; Joshi YM; Bandyopadhyay R
    Soft Matter; 2014 May; 10(18):3292-300. PubMed ID: 24637644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational relaxation in ortho-terphenyl: using atomistic simulations to bridge theory and experiment.
    Eastwood MP; Chitra T; Jumper JM; Palmo K; Pan AC; Shaw DE
    J Phys Chem B; 2013 Oct; 117(42):12898-907. PubMed ID: 23841719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the heterogeneity in time of the dynamics within a slowly relaxing region of a supercooled liquid: Role of sharp relaxation events.
    Alarcón LM; Frechero MA; Montani RA; Appignanesi GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026127. PubMed ID: 19792220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.