BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26067896)

  • 1. Synthetic wastewaters treatment by electrocoagulation to remove silver nanoparticles produced by different routes.
    Matias MS; Melegari SP; Vicentini DS; Matias WG; Ricordel C; Hauchard D
    J Environ Manage; 2015 Aug; 159():147-157. PubMed ID: 26067896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of silver nanoparticles coated with different stabilizers from aqueous medium by electrocoagulation.
    Bortoli LD; Palácio SM; Hermes E; Zenatti DC; Veit MT; Campos ÉA
    Environ Technol; 2020 Apr; 41(9):1139-1150. PubMed ID: 30198817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Citrate-Coated Silver Nanoparticles Interactions with Effluent Organic Matter: Influence of Capping Agent and Solution Conditions.
    Gutierrez L; Aubry C; Cornejo M; Croue JP
    Langmuir; 2015 Aug; 31(32):8865-72. PubMed ID: 26230840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylene blue dye removal on silver nanoparticles reduced by Kyllinga brevifolia.
    Isa N; Lockman Z
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11482-11495. PubMed ID: 30806934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic-liquid-based microextraction method for the determination of silver nanoparticles in consumer products.
    Soriano ML; Ruiz-Palomero C; Valcárcel M
    Anal Bioanal Chem; 2019 Aug; 411(20):5023-5031. PubMed ID: 31177332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout.
    Bruneau A; Turcotte P; Pilote M; Gagné F; Gagnon C
    Aquat Toxicol; 2016 May; 174():70-81. PubMed ID: 26921728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiviral application of colloidal and immobilized silver nanoparticles.
    Bharti S; Mukherji S; Mukherji S
    Nanotechnology; 2021 May; 32(20):205102. PubMed ID: 33561842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.
    Amooaghaie R; Saeri MR; Azizi M
    Ecotoxicol Environ Saf; 2015 Oct; 120():400-8. PubMed ID: 26122733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples.
    Su CK; Hsieh MH; Sun YC
    Anal Chim Acta; 2016 Mar; 914():110-6. PubMed ID: 26965333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.
    Ashour AA; Raafat D; El-Gowelli HM; El-Kamel AH
    Int J Nanomedicine; 2015; 10():7207-21. PubMed ID: 26664112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii.
    Chang TY; Chen CC; Cheng KM; Chin CY; Chen YH; Chen XA; Sun JR; Young JJ; Chiueh TS
    Colloids Surf B Biointerfaces; 2017 Jul; 155():61-70. PubMed ID: 28411476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract.
    Nasiriboroumand M; Montazer M; Barani H
    J Photochem Photobiol B; 2018 Feb; 179():98-104. PubMed ID: 29351880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiochemical properties of Trichoderma longibrachiatum DSMZ 16517-synthesized silver nanoparticles for the mitigation of halotolerant sulphate-reducing bacteria.
    Omran BA; Nassar HN; Younis SA; Fatthallah NA; Hamdy A; El-Shatoury EH; El-Gendy NS
    J Appl Microbiol; 2019 Jan; 126(1):138-154. PubMed ID: 30199141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic approach of removal mechanisms, control and optimization of silver nanoparticle in wastewater treatment plants.
    Vilela P; Liu H; Lee S; Hwangbo S; Nam K; Yoo C
    Sci Total Environ; 2018 Aug; 633():989-998. PubMed ID: 29758920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance.
    Zook JM; Long SE; Cleveland D; Geronimo CL; MacCuspie RI
    Anal Bioanal Chem; 2011 Oct; 401(6):1993-2002. PubMed ID: 21808990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose Whiskers Influence the Morphology and Antibacterial Properties of Silver Nanoparticles Composites.
    Teodoro KBR; Sanfelice RC; Mattoso LHC; Correa DS
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4876-4883. PubMed ID: 29442668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of biogenic silver nanoparticles from Ficus religiosa bark extract and their application for chromium removal.
    Riaz A; Nosheen S; Mughal TA
    Microsc Res Tech; 2022 Nov; 85(11):3618-3622. PubMed ID: 35942990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of silver from wastewater and planktonic food borne silver nanoparticles in the rainbow trout Oncorhynchus mykiss.
    Zeumer R; Hermsen L; Kaegi R; Kühr S; Knopf B; Schlechtriem C
    Sci Total Environ; 2020 Mar; 706():135695. PubMed ID: 31940723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg²⁺.
    Shen Z; Luo Y; Wang Q; Wang X; Sun R
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16147-55. PubMed ID: 25144307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.