These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26067911)

  • 1. Reconstruction of pulse noisy images via stochastic resonance.
    Han J; Liu H; Sun Q; Huang N
    Sci Rep; 2015 Jun; 5():10616. PubMed ID: 26067911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of noisy images via stochastic resonance in nematic liquid crystals.
    Feng X; Liu H; Huang N; Wang Z; Zhang Y
    Sci Rep; 2019 Mar; 9(1):3976. PubMed ID: 30850690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse noise-hidden image reconstruction and visualization via stochastic resonance.
    Sun Q; Liu H; Huang N; Wang Z; Han J
    Sci Rep; 2016 Nov; 6():36678. PubMed ID: 27824152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear restoration of pulse and high noisy images via stochastic resonance.
    Sun Q; Liu H; Huang N; Wang Z; Han J; Li S
    Sci Rep; 2015 Nov; 5():16183. PubMed ID: 26530885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting nanosecond pulse signals via stochastic resonance generated by surface plasmon bistability.
    Han J; Liu H; Sun Q; Huang N; Wang Z; Li S
    Opt Lett; 2015 Nov; 40(22):5367-70. PubMed ID: 26565876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing signals via stochastic resonance generated by photorefractive two-wave mixing bistability.
    Cao G; Liu H; Li X; Huang N; Sun Q
    Opt Express; 2014 Feb; 22(4):4214-23. PubMed ID: 24663745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of an underwater scattered image via incoherent modulation instability.
    Han J; Xu Q; Chen J; Zhu L; Li Z
    Opt Lett; 2019 Feb; 44(3):695-698. PubMed ID: 30702713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of pulse signal restoration by stochastic resonance in a buckled microcavity.
    Sun H; Liu H; Sun Q; Huang N; Wang Z; Han J
    Appl Opt; 2016 Apr; 55(12):3351-5. PubMed ID: 27140110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse signal restoration via stochastic resonance in a Fabry-Perot cavity with an intracavity nematic liquid crystal film.
    Feng X; Liu H; Huang N; Wang Z; Zhang Y
    Opt Express; 2019 May; 27(10):14931-14941. PubMed ID: 31163934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of weak near-infrared images in methyl red-doped nematic liquid crystals via stochastic resonance.
    Ji W; Wang Z; Huang N; Liu H
    Opt Express; 2022 Aug; 30(17):30108-30120. PubMed ID: 36242121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On some applications of vibrational resonance on noisy image perception: the role of the perturbation parameters.
    Morfu S; Usama BI; Marquié P
    Philos Trans A Math Phys Eng Sci; 2021 May; 379(2198):20200240. PubMed ID: 33840210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hidden image recovery using a biased photorefractive crystal in the Fourier plane of an optical imaging system.
    Gan H; Xu N; Li J; Xu T; Wang Y; Sun Z; Ma C; Wang J; Song F; Sun M; Li L; Sheng C
    Opt Express; 2015 Feb; 23(3):2070-5. PubMed ID: 25836078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear reconstruction of weak optical diffused images under turbid water.
    Wang Z; Liu H; Huang N; Zhang Y; Chi J
    Opt Lett; 2019 Jul; 44(14):3502-3505. PubMed ID: 31305558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment.
    Riddell C; Carson RE; Carrasquillo JA; Libutti SK; Danforth DN; Whatley M; Bacharach SL
    J Nucl Med; 2001 Sep; 42(9):1316-23. PubMed ID: 11535719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoacoustic tomography from weak and noisy signals by using a pulse decomposition algorithm in the time-domain.
    Liu L; Tao C; Liu X; Deng M; Wang S; Liu J
    Opt Express; 2015 Oct; 23(21):26969-77. PubMed ID: 26480358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-maximum enhancement of signal-to-noise ratio gain via stochastic resonance and vibrational resonance.
    Duan F; Chapeau-Blondeau F; Abbott D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022134. PubMed ID: 25215715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete image recovery via stochastic resonance in optically induced photonic lattices.
    Zhang Y; Liu H; Huang N; Wang Z
    Sci Rep; 2019 Aug; 9(1):11815. PubMed ID: 31413338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM.
    Razifar P; Sandström M; Schnieder H; Långström B; Maripuu E; Bengtsson E; Bergström M
    BMC Med Imaging; 2005 Aug; 5():5. PubMed ID: 16122383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal-to-noise ratio improvement by stochastic resonance in a unidirectional photorefractive ring resonator.
    Jost BM; Saleh BE
    Opt Lett; 1996 Feb; 21(4):287-9. PubMed ID: 19865381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of stochastic resonance in a liquid-crystal light valve with optical feedback induced by colored noise in the driving voltage.
    Goto Y; Shishibe A; Orihara H; Residori S; Nagaya T
    Phys Rev E; 2020 Dec; 102(6-1):062702. PubMed ID: 33466002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.