These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26067985)

  • 1. Advancing from Rules of Thumb: Quantifying the Effects of Small Density Changes in Mass Transport to Electrodes. Understanding Natural Convection.
    Ngamchuea K; Eloul S; Tschulik K; Compton RG
    Anal Chem; 2015 Jul; 87(14):7226-34. PubMed ID: 26067985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments.
    Pebay C; Sella C; Thouin L; Amatore C
    Anal Chem; 2013 Dec; 85(24):12062-9. PubMed ID: 24283775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ analysis of three-dimensional electrolyte convection evolving during the electrodeposition of copper in magnetic gradient fields.
    Tschulik K; Cierpka C; Gebert A; Schultz L; Kähler CJ; Uhlemann M
    Anal Chem; 2011 May; 83(9):3275-81. PubMed ID: 21526858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning Electrochemical Microscopy with Forced Convection Introduced by High-Precision Stirring.
    Iffelsberger C; Vatsyayan P; Matysik FM
    Anal Chem; 2017 Feb; 89(3):1658-1664. PubMed ID: 28208264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.
    König J; Tschulik K; Büttner L; Uhlemann M; Czarske J
    Anal Chem; 2013 Mar; 85(6):3087-94. PubMed ID: 23432054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-One-Dimensional Generator-Collector Electrochemistry in Nanochannels.
    Kostiuchenko ZA; Lemay SG
    Anal Chem; 2020 Feb; 92(3):2847-2852. PubMed ID: 31934747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass transport at microband electrodes: transient, quasi-steady-state, and convective regimes.
    Amatore C; Pebay C; Sella C; Thouin L
    Chemphyschem; 2012 Apr; 13(6):1562-8. PubMed ID: 22411777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference between ultramicroelectrodes and microelectrodes: influence of natural convection.
    Amatore C; Pebay C; Thouin L; Wang A; Warkocz JS
    Anal Chem; 2010 Aug; 82(16):6933-9. PubMed ID: 20704383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forced convection during feedback approach curve measurements in scanning electrochemical microscopy: maximal displacement velocity with a microdisk.
    Cornut R; Poirier S; Mauzeroll J
    Anal Chem; 2012 Apr; 84(8):3531-7. PubMed ID: 22385037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot-Tip Scanning Electrochemical Microscopy: Theory and Experiments Under Positive and Negative Feedback Conditions.
    Zhao Z; Leonard KC; Boika A
    Anal Chem; 2019 Feb; 91(4):2970-2977. PubMed ID: 30623642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of convergent diffusion and charge transfer kinetics on the diffusion layer thickness of spherical micro- and nanoelectrodes.
    Molina A; Laborda E; González J; Compton RG
    Phys Chem Chem Phys; 2013 May; 15(19):7106-13. PubMed ID: 23552132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of redox probes through single pores measured by scanning electrochemical-scanning ion conductance microscopy (SECM-SICM).
    Morris CA; Chen CC; Baker LA
    Analyst; 2012 Jul; 137(13):2933-8. PubMed ID: 22278118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy for increasing the electrode density of microelectrode arrays by utilizing bipolar behavior of a metallic film.
    Zhu F; Yan J; Pang S; Zhou Y; Mao B; Oleinick A; Svir I; Amatore C
    Anal Chem; 2014 Mar; 86(6):3138-45. PubMed ID: 24528154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the diffusion of ferrocenemethanol in room-temperature ionic liquids: an electrochemical study.
    Lovelock KR; Ejigu A; Loh SF; Men S; Licence P; Walsh DA
    Phys Chem Chem Phys; 2011 Jun; 13(21):10155-64. PubMed ID: 21526252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection.
    Larchet C; Nouri S; Auclair B; Dammak L; Nikonenko V
    Adv Colloid Interface Sci; 2008 Jun; 139(1-2):45-61. PubMed ID: 18308286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of metal ion dissolution and electrodeposition by anodic stripping voltammetry-scanning electrochemical microscopy.
    Alpuche-Aviles MA; Baur JE; Wipf DO
    Anal Chem; 2008 May; 80(10):3612-21. PubMed ID: 18407616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis and application of tip position modulation-scanning electrochemical microscopy.
    Edwards MA; Whitworth AL; Unwin PR
    Anal Chem; 2011 Mar; 83(6):1977-84. PubMed ID: 21322581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D shearforce-based constant-distance mode scanning electrochemical microscopy.
    Nebel M; Eckhard K; Erichsen T; Schulte A; Schuhmann W
    Anal Chem; 2010 Sep; 82(18):7842-8. PubMed ID: 20735144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ study of the magnetoelectrolysis phenomenon during copper electrodeposition using time domain NMR relaxometry.
    Gomes BF; Nunes LM; Lobo CM; Cabeça LF; Colnago LA
    Anal Chem; 2014 Oct; 86(19):9391-3. PubMed ID: 25162751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.